• 제목/요약/키워드: hot wire anemometer

검색결과 172건 처리시간 0.021초

가솔린 엔진의 스로틀 밸브 출구에서 유동측정 (Flow Measurements at the Exit of a Throttle Valve in Gasoline Engines)

  • 김성초;김철;최종근;위화복
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.1-8
    • /
    • 2002
  • The flow and combustion patterns have been investigated inside the gasoline engine cylinder with the swirl or tumble flow, whereas the air flow characteristics, which are generated in the part of intake system before entering into the intake manifold, have not been known completely. It is necessary to analyze the flow field in the intake system consisting of air rater, throttle valve and intake manifold. The throttle valve, used to control the intake air flow rate, is important because it makes various mass flow rate and flow patterns. Three-dimen-sional How characteristics such as velocities, turbulent intensities and Reynolds shear stresses are measured by the hot wire anemometer at the exit of the throttle valve with the variation in the valve opening angle($15^{\circ}$, $45^{\circ}$, $75^{\circ}$ and $90^{\circ}$) and the Reynolds numbers (45000, 70000 and 140000). There are a lot of changes in flow characteristics at $75^{\circ}$ due to the large recirculation flow comparing with those of the other cases, and the streamwise velocity is especially enforced strongly below the valve shaft. The other component velocities are relatively large near the centerline parallel to the valve shaft. The effects of the Reynolds number on the flow field are not severe.

Investigation of passive flow control on the bluff body with moving-belt experiment

  • Rho, Joo-Hyun;Lee, Dongho;Kim, Kyuhong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권2호
    • /
    • pp.139-148
    • /
    • 2016
  • The passive control methods such as horizontal and vertical fences on the lower surface of the bluff body were applied to suppress the vortex shedding and enhance the aerodynamic stability of flow. For investigating the effects of the passive control methods, wind tunnel experiments on the unsteady flow field around a bluff body near a moving ground were performed. The boundary layer and velocity profiles were measured by the Hot Wire Anemometer (HWA) system and the vortex shedding patterns and flow structures in a wake region were visualized via the Particle Image Velocimetry (PIV) system. Also, it is a measuring on moving ground condition that the experimental values of the critical gap distances, Strouhal numbers and aerodynamic force FFT analyses. Through the experiments, we found that the momentum supply due to moving ground caused the vortex shedding at the lower critical gap distance rather than that of fixed ground. The horizontal and vertical fences increase the critical gap distance and it can suppress the vortex shedding. Consequently, the stability characteristics of the bluff body near a moving ground could be effectively enhanced by the simple passive control such as the vertical fences.

유해물질 및 공업용 분진 제거를 위한 산업용 후드 개선에 관한 연구 (A Study on Improvement of Industrial Hood in Ventilation System for Elimination of Harmful Material and Dust)

  • 김영선;오율권
    • 설비공학논문집
    • /
    • 제20권4호
    • /
    • pp.238-244
    • /
    • 2008
  • This study investigates on the improvement of inhalation effect of hood which attached new device named as "gas-guide-device" in local exhaust ventilation system for the effective elimination of harmful material and dust in manufacturing factory. The gas-guide-device having a diamond shape is composed of width (b) and two sides of a device (X, Y) and its size is selected the industrial hood under application in manufacturing factory after due consideration. In order to investigate the effect of gas-guide-device, numerical and experimental study is performed that the flow velocity is calculated and is measured by a commercial program "COMSOL $Multiphysics^{TM}$" and a hot wire type of anemometer, respectively. The numerical and experimental results are revealed is a similar pattern and flow velocity has improved to hood attached gas-guide-device. Also, the numerical method and result is also verified the dependance. Moreover, the optimum shape and size of gas-guide-device is revealed that the width (b) and the ratio of two sides of gas-guide-device (X, Y) has 125mm and 4 to 6.

경사충돌분류에 관한 연구 (A study on an oblique impinging jet)

  • 조용철;김광용;박상규
    • 대한기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.716-724
    • /
    • 1990
  • 본 연구에서는 2차원 경사충돌분류에 대한 실험을 수행하였고, 이 결과를 수] 치해석에 의한 계산치와 비교하였다. 실험에서는 난류특성을 구명하기 위하여 열선 풍속계를 사용해 충돌각의 변화에 따른 평균속도, 각 난류응력성분, 압력등을 측정하 였다.수치해석을 위한 난류모델로는 표준 K-.epsilon.모델을 사용하였다.

언덕지형을 지나는 유동에 관한 연구 (Wind Flow over Hilly Terrain)

  • 임희창;김현구;이정묵;경남호
    • 한국대기환경학회지
    • /
    • 제12권4호
    • /
    • pp.459-472
    • /
    • 1996
  • An experimental investigation on the wind flow over smooth bell-shaped two-dimensional hills with hill slopes (the ratio of height to half width) of 0.3 and 0.5 is performed in an atmospheric boundary-layer wind tunnel. Two categories of the models are used in the present investigation; six two-dimensional single-hills, and four continuous double-hills. The measurements of the flow field and surface static-pressure distribution are carried out over the Reynolds number (based on the hill height) of 1.9 $\times 10^4, 3.3 \times 10^4, and 5.6 \times 10^4$. The velocity profiles and turbulence characteristics are measured by the pitot-tube and X-type hot-wire anemometer, respectively. The undisturbed boundary-layer profile on the bottom surface of the wind tunnel is reasonably consistent with the power-law profile with $\alpha = 7.0 (1/\alpha$ is the power-law exponent) and shows good spanwise uniformities. The profiles of turbulent intensity are found to be consistent along the centerline of the wind tunnel. The measured non-dimensional speed-up profiles at the hill crest show good agreements with the predictions of Jackson and Hunt's linear theory. The flow separation occurs in the hill slope of 0.5, and the oil-ink dot method is used to find the reattachment points in the leeside of the hill. The measured reattachment points are compared with the numerical predictions. Comparisons of the mean velocity profiles and surface pressure distributions between the numerical predictions and the experimental results show good agreements.

  • PDF

전자제어 엔진의 공기유량센서 유동구조 연구 (Flow Mechanism around Air Flow Sensor of Electronic Control Engine)

  • 이종춘;황성만;부정숙
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권4호
    • /
    • pp.486-493
    • /
    • 2000
  • Flow mechanism around air flow sensor of electronic control engine, especially Karman vortex type, was investigated experimentally. The two-dimensional flow characteristics in the intermediate wake region behind a triangular vortex-generator respectively apex forward facing, apex backward facing and vertical flat plates following after apex forward facing(i.e vortex-flowmeter) were investigated at Reynolods number of $ReH=1.4\times10^4$; H is the width of a triangular vortex-generator. The vortex shedding frequency for wide Reynolds number from $7\times10^3$ to $2.1\times10^4$ was also surveyed. The velocity component was measured by X-type hot wire anemometer at 8H downstream from the bluff body. The coherent structure of the intermediate wake behind a bluff body was obtained by conditional phase average technique. As a result, it was verified that the vertical flat plates following after apex forward triangular vortex-generator make not only more linear relation between free stream velocity and vortex shedding frequency but also more periodic vortex in the vicinity of the center of wake.

  • PDF

스월유동장에 있어서 연소속도에 미치는 난류특성의 영향에 관한 연구 (A study on the influence of turbulence characteristics on burning speed in swirl flow field)

  • 이상준;이종태;이성열
    • 대한기계학회논문집B
    • /
    • 제20권1호
    • /
    • pp.244-254
    • /
    • 1996
  • Flow velocity was measured by, use of hot wire anemometer. Turbulence intensity was in proportion to mean flow velocity regardless of swirl velocity. And integral length scale has proportional relation with swirl velocity regardless of measurement position. Turbulent burning speed during flame propagation which was determined by flame photograph and gas pressure of combustion chamber was increased with the lapse of time from spark and was decreased a little at later combustion period. Because of combustion promotion effect, turbulent burning speed was increased according to increase of turbulence intensity. Burning speed ratio i.e. ratio of turbulent burning speed ($S_BT$) to laminar burning speed ($S_BL$) was found out by use of turbulence intensity u' and integral length scale $l_x$ , $\delta_L$ is width of preheat zone in laminar flame.

사각주 후류가 선형터빈익렬의 유동 및 열전달에 미치는 영향에 관한 연구 (Influence of the Wake Behind Rectangular Bars on the Flow and Heat Transfer in the Linear Turbine Cascade)

  • 윤순현;심재경;우창수;이대희
    • 대한기계학회논문집B
    • /
    • 제23권7호
    • /
    • pp.864-870
    • /
    • 1999
  • An experimental study Is conducted in a four-vane linear cascade in order to examine the influence of the wake behind rectangular bars on the flow and heat transfer characteristics. Flow and heat transfer measurements are made for the inlet Reynolds number of 66000(based on chord length and free-stream velocity). Turbulent intensity and stress are measured using a hot-wire anemometer, and to measure the convective heat transfer coefficients on the blade surface liquid crystal/gold film Intrex technique is used. Each of experimental cases is characterized by the unsteadiness measured at the entrance of the cascade. The wake behind the rectangular bars enhances the turbulent motion of the flow in the cascade passage. It also promotes the boundary layer development and transition. The results show that heat transfer coefficients on the blade surface increase with increasing unsteadiness.

4각 덕트의 입구영역에서 천이 정상유동의 입구길이에 관한 연구 (A Study on Entrance Length of Developing Transitional Steady Flows in a Square Duct)

  • 박길문;유영태;고영하
    • 설비공학논문집
    • /
    • 제2권1호
    • /
    • pp.1-10
    • /
    • 1990
  • In the present study, the entrance length, velocity profiles and waveforms of developing transitional steady flows in a square duct are investigated analytically and experimentally. The systems of conservation equations for transitional steady duct flows are solved analytically by linearizing non-linear convective terms and adoption of modified eddy viscosity from empirical correlations. Analytical solutions of velocity profiles for developing transitional steady flow were obtained in the form of infinite series. The experimental study for transitional steady flow in a square duct with $40mm{\times}40mm{\times}4000mm$($width{\times}height{\times}length$) was carried out to measure velocity profiles and other parameters by using a hot-wire anemometer with data acquisition and processing system. The entrance length of developing transitional steady flows in a square duct was $L_e{\fallingdotseq}0.02{\cdot}Re,st{\cdot}D_h$, and the overshoot was occured at about 30 times of hydraulic diameter because of the effect of external velocity of boundary layer and instantaneous acceleration.

  • PDF

연소효율 개선을 위한 스월제트의 난류유동 특성에 관한 연구 (A Study on the Turbulent Flow Characteristics of Swirl Jets for Improvement of Combustion Efficiency)

  • 고동국;윤석주
    • 한국분무공학회지
    • /
    • 제19권2호
    • /
    • pp.75-81
    • /
    • 2014
  • Swirl flow in the gun type burner has a decisive effect on the stabilization of the flame, improvement of the combustion efficiency, and also a reduction of NOx. This swirl flow is created by the spinner which is inside the airtube that guide the combustion air. Gun type burner has generally the inner devices composed nozzle adapter, spark gap ignitor, and spinner. These inner components change the air flow behavior passing through air tube. Meanwhile, turbulent characteristics of this air flow are important to understand the combustion phenomena in the gun type burner, because the mixture of fuel and air are depended on. However, nearly all of the studies have been analyzed the turbulent flow of simplified combustion formation without the inner devices. So, this study conducted the measurement using by hot-wire anemometer and analyzed turbulent flow characteristics of the swirl flow discharged from the air tube with inner devices. Turbulence characteristics come up in this study were turbulence intensity, kinetic energy and shear stress of the air flow with the change of the distance of axial direction from the exit of the air tube.