• Title/Summary/Keyword: hot rolling process

Search Result 226, Processing Time 0.025 seconds

Numerical Study on Defect Analysis of Hot Cross Wedge Rolling Process (열간전조공정의 공정결함 분석을 위한 해석적 연구)

  • Lee, Hyoung Wook
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.2
    • /
    • pp.17-21
    • /
    • 2013
  • Hot cross wedge rolling process as an incremental forming has many advantages such as the material usage, the short process time, the automatic equipment line and the low forming load. However, it occurs some defects such as the surface groove, the axis warping and the Mannesmann hole. In this paper, the defect of the Mannesmann hole was carried out. Finite element analysis was utilized to reveal the stress distribution, the rotation of the specimen and the change of section profile. Cross wedge rolling experiment was also conducted on the generation of the Mannesmann hole. It was demonstrated according to the spreading angle with respect to the various types of material. In the view point of metal flow, the smaller forming angle and the larger spreading angle increase opportunities of the defect hole generations.

  • PDF

Work Roll Diagnosis by Roll Life Prediction Model in Hot Rolling Process (Roll 수명예측모델에 의한 열연작업롤 진단)

  • Bae, Yong-Hwan;Jang, Sam-Kyu;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.69-80
    • /
    • 1993
  • It is important to prevent roll failure in hot rolling process for reducing maintenance coat and production loss. Roll material and rolling conditions such as the roll force and torque have been intensively investigated to overcome the roll failures. In this study, a computer roll life prediction system under working condition is developed and evaluated on IBM-PC level. The system is composed and fatigue estimation models which are stress analysis, crack propagation, wear and fatigue estimation. Roll damage can be predicted by calculating the stress anplification, crack depth propagation and fatigue level in the roll using this computer model. The developed system is applied to a work roll in actual hot rolling process for reliability evaluation. Roll failures can be diagnosed and the propriety of current working condition can be determined through roll life prediction simulation.

  • PDF

Nucleation and Growth Mechanism of Sticking Phenomenon in Ferritic Stainless Steel (페라이트계 스테인레스강의 STICKING 발생 및 성장기구)

  • Jin, W.;Choi, J.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.373-382
    • /
    • 1999
  • Nucleation and growth process of sticking particle in ferritic stainless steels was investigated using a two disk type hot rolling simulator. The sticking behavior was strongly dependent on the surface roughness of a high speed steel roll(HSS) and the oxidation resistance of the ferritic stainless steels. A hot rolling condition with the lower oxidation resistance of the stainless steel and the higher surface roughness of HSS roll was more sensitive to sticking occurrence. It was also illucidated that the initial sticking particles were nucleated at the scratches formed on the roll surface and were served as the sticking growth sites. As rolling proceeded, the sticking particles grew sites. As rolling proceeded, the sticking particles grew by the process that the previous sticking particles provided the sticking growth sites.

  • PDF

Wrinkle Defect of Low Carbon Steel in Wire Rod Rolling (저탄소강 선재 압연의 주름성 결함)

  • Kim H. Y.;Kwon H. C.;Byon S. M.;Park H. D.;Im Y. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.307-316
    • /
    • 2004
  • This study examined the cause of the wrinkle defect which is frequently encountered in wire rod rolling of low carbon steel$(C0.08\~0.13wt.\%)$. Even a small defect on the surface of rolled bars can easily develop into fatal cracks during cold heading process of low carbon steel, and it is therefore necessary to minimize inherent defects on the surface of hot rolled bars. Hot rolling process of low carbon steel was analyzed to identify the cause of the wrinkle defect in conjunction with FE analysis. The integrated analysis revealed that the wrinkle defect initiated in the first stage of rolling, and it was at the billet edge where severe deformation and drastic temperature drop were present. To elucidate the micro-mechanical mechanism of the wrinkle defect, hot compression tests were carried out at various temperatures and strain rates using Gleeble-3800. The surface profile of the each other compressed specimens was compared, and rough surface lines were observed at relatively low temperatures. Those surface defects can develop into wrinkles during multi-pass rolling. To control the wrinkle defect in rolling, it is necessary to design an adequate caliber which can minimize the loss of ductility, and thereby prevent flow localization. To use the result of this study fur other steels, the quantitative measure of the wrinkle defect and flow localization parameter should be proposed.

  • PDF

FE-based On-Line Model for the Prediction of Roll Force and Roll Power in Finishing Mill (II) Effect of Tension (유한요소법에 기초한 박판에서의 압하력 및 압연동력 정밀 예측 On-Line모델 (II) 장력의 영향)

  • KWAK W. J.;KIM Y. H.;PARK H. D.;LEE J. H.;HWANG S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.121-124
    • /
    • 2001
  • On-line prediction model which calculate roll force, roll power and forward slip of continuous hot strip rolling was built based on the results of plane strait rigid-viscoplastic finite element process model. Using the integrated FE process model, a series of finite element simulation was conducted over the process variables, and the influence of various process conditions on non-dimensional parameters was inspected. The prediction accuracy of the proposed on-line model under front and back tension is examined through comparison with predictions from a finite element process model over the various process conditions. In addition, we examined the validity of the on-line prediction model through comparison with roll force of experiment in hot rolling.

  • PDF

A Neural Net Type Process Model for Enhancing Learning Compensation Function in Hot Strip Finishing Rolling Mill (열연 마무리 압연기에서 압연속도 학습보상기능개선을 위한 신경망형 공정 모델)

  • Hong, Seong-Cheol;Lee, Haiyoung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.6
    • /
    • pp.59-67
    • /
    • 2013
  • This paper presents a neural net type process model for enhancing learning compensation function in hot strip finishing rolling mill. Adequate input and output variables of process model are chosen, the proposed model was designed as single layer neural net. Equivalent carbon content, strip thickness and rolling speed are suggested as input variables, and looper's manipulation variable is proposed as output variable. According to simulation result using process data to show the validity of the proposed process model, neural net type process model's outputs give almost similar data to process output under same input conditions.

A Study On The Microstructural Evolution In Hot Rolling (열간압연중 발생하는 미세조직 변화에 관한 연구)

  • 조현중;김낙수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.16-29
    • /
    • 1995
  • A full three-dimensional thermo-coupled rigid-viscoplastic finite element method and the currently developed microstructural evolution system which includes semi-empirical mathematical equations suggested by different research groups were used together to form an integrated system of process and microstructure simulation of hot rolling. The distribution and time history of thermomechanical variables such as temperature, strain, strain rate, and time during pass and between passes were obtained FEM analysis of multipass hot rolling processes. Then distribution of metallurgical variables were calculated successfully on the basis of instantaneous thermomechanical data. For the verification of this method the evolution of microstructure in plate rolling and shape rolling was simulated and their results were compared with the data available in literature. Consequently, this approach makes it passible to describe the realistic evolution of microstructure by avoiding the use of erroneous average value and can be used in CAE of multipass hot rolling.

  • PDF

A NEW ON-LINE BAR JOINING TECHNOLOGY FOR ENDLESS HOT ROLLING

  • Lee, Jong-Sub;Kim, Ki-Chol;Won, Chun-Soo;Kenji Horii;Talmo Funamoto
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.282-288
    • /
    • 2002
  • A new on-line bar joining technology employing the concept of a solid-state joining has been developed for the endless rolling by POSCO, RIST and MHMM Inc.. In the process, the bars are partially descaled, partially overlapped, joined by shearing action and crops are finally removed. The feasibility of the developed process was evaluated in this study in terms of microstructures and mechanical properties of joints, and the response of the joint to rolling.

  • PDF

Analysis of Friction Coefficient Dependent on Variation of Steel Grade and Reduction Ratio in High Temperature Rolling Process (고온압연공정에서 강종 및 감면율 변화에 따른 마찰계수 변화 분석)

  • Her, J.;Lee, H.J.;Na, D.H.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.18 no.5
    • /
    • pp.410-415
    • /
    • 2009
  • Experimental and numerical studies were performed to examine the effect of material temperature and reduction ratio on friction coefficient during hot flat rolling. We carried out a single pass pilot hot flat rolling test at the temperatures range of $900{\sim}1200^{\circ}C$ and measured the spread of deformed material while reduction ratio varied from 20% to 40%. Materials used in this study were a high carbon steel and two alloy steels. The dimension of specimen used in hot rolling experiment was $50mm{\times}50mm{\times}300mm$. We performed a series of finite element simulation of the hot rolling process to compute the friction coefficient change in terms of steel grade and reduction ratio. Results showed that temperature dependency of friction coefficient is not noteworthy but the effect of reduction ratio on friction coefficient is quite large. For high carbon steel, friction coefficient at reduction ratio of 30% is lower than that at that of 20%. Meanwhile friction coefficient at reduction ratio of 40% was one and half times large compared with that at that of 20%. The effect of steel grade on friction coefficient was significant when reduction ration was large, e.g., 40%.

Deformation Behavior of Slab by Two-Step Sizing Press in a Hot Strip Mill (열간 압연에서 2단 사이징 프레스 금형에 의한 슬래브의 변형거동 예측)

  • Lee S. H.;Kim D. H.;Byon S. M.;Park H. D.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.432-435
    • /
    • 2005
  • Extensive width reduction of slabs is an important technology to achieve continuous production between the steelmaking and hot rolling processes. Conventionally, a vertical roll process has been used to achieve extensive width reduction. However, it is impossible to avoid the defects such as dog-bone, fish tail and camber. The deformation behavior in the width sizing process is more favorable than that in conventional vertical rolling edger, i.e. the material better flows toward the center of slab. This study is carried out to investigate the deformation of slab by two-step sizing press. The FE-simulation is utilized to predict plastic deformation mode in compression by a sizing press of slabs far hot rolling. In this paper, the various causes of the asymmetrical rolling phenomena are mentioned for the purpose of understanding of rolling conditions. Analytical results of slab-deformation by sizing press are presented below in this study.

  • PDF