• Title/Summary/Keyword: hot rolling process

Search Result 226, Processing Time 0.039 seconds

Changes in Microstructure and Mechanical Properties due to Heat Treatment of Mg-1.0Al-1.0Zn-0.2Mn-0.5Ca Alloy Sheet Manufactured via Normal Casting and Twin Roll Casting Process (일반주조 및 쌍롤주조 공정으로 제조된 Mg-1.0Al-1.0Zn-0.2Mn-0.5Ca 합금 판재의 열처리에 따른 미세조직 및 기계적 특성 변화)

  • Dong Hwan Eom;No Jin Park
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.6
    • /
    • pp.359-366
    • /
    • 2023
  • Changes in microstructure and mechanical properties of Mg-1.0Al-1.0Zn-0.2Mn-0.5Ca (AZMX1100) alloy sheet manufactured by normal casting and twin roll casting process, were studied according to process and heat treatment. Non-uniform microstructure was observed in the initial sheet produced through both processes, and in particular, tilted dendrites and shifted central segregation were observed in the twin roll casting sheet. It was homogenized through hot rolling and heat treatment, and heat treated at 350℃ and 400℃ to compare the effect of heat treatment temperature. Both sheets were homogenized by the hot rolling process, and the grain size increased as the heat treatment temperature and time increased. It was confirmed that the grain size, deviation, and distribution of the second phase were finer and more homogenized in the TRC sheet. Accordingly, mechanical properties such as hardness, formability, and tensile strength also showed better values. However, unlike other previously reported AZMX alloy systems, it showed low formability (Erichsen value), which was judged by the influence of Al2Ca present in the microstructure.

The Influence of Microstructure on the Bauschinger Effect in X80 Grade API Steel (X80급 API 강의 바우싱거 효과에 미치는 미세조직의 영향)

  • Park, J.S.;Kim, D.W.;Chang, Y.W.
    • Transactions of Materials Processing
    • /
    • v.15 no.2 s.83
    • /
    • pp.118-125
    • /
    • 2006
  • API steel is used for line-pipe to transport the oil and natural gas. As the recent trends in the development of API steel are towards the use of larger diameter and thicker plate, many researches have been studied to achieve higher strength, higher toughness and lower yield ratio in API steel. However, the strength of API steel after pipe forming is changed depending on the competition of the Bauschinger effect and work hardening which are affected by the strain history during pipe forming process. So, the purpose of this study is to investigate the influence of microstructure on the Bauschinger effect for API steel. To change the microstructure of API steel we have changed the hot rolling condition and the amounts of V and Cu addition. The compression-tensile test and the microstructure observation by OM and TEM were conducted to investigate the yield strength drop and the correlation between the Bauschinger effect and microstructure of API steel. The experimental results show that the increase of polygonal ferrites volume fraction increases the Baushcinger effect due to the back stress which comes from the increase of mobile dislocation density at polygonal ferrite interior during the compressive deformation. The hot rolling condition was more effective on the Bauschinger effect in API steel than the small amount of V and Cu addition.

The Trial Manufacture of the Grain-Oriented Ultra-Thin Silicon Steel Ribbon using Hot-Rolled Plate (열연판을 사용한 방향성 박규소강대의 제작)

  • 강희우
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • We investigated to DC magnetic characteristics, the dependence of annealing temperature on the crystal grain and the crystalline orientation for grain-oriented silicon ribbon with 100 $\mu\textrm{m}$ final thickness manufactured by three times cold rolling method using the hot-rolled silicon steel plate as a raw material. The growth of (110)[001] Goss texture were almost observed in the whole area of the sample. The values of the saturation magnetic flux density B$\sub$s/ and the average ${\alpha}$ angle have 1.9 T and 4.6 degrees respectively. From this result we could be confirmed that the three times cold rolling method has a possibility of manufacture for oriented ultra-thin silicon ribbons much more simple and cheeper than the existing oriented silicon steel manufacturing method by means of more simplified producing process.

  • PDF

Temperature Control of a Reheating Furnace using Feedback Linearization and Predictive Control

  • Park, Jae-Hun;Jang, Yu-Jin;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.27.1-27
    • /
    • 2001
  • Reheating furnace is a facility of heating up the billet to desired high temperature in the hot charge rolling process and it consists of 3 zones. Temperature control of reheating furnace is essential for successful rolling performance and high productivity. Mostly, temperature control is carried out using PID controller However, the PID control is not effective due to the nonlinearity of the reheating furnace(i.e, presence of the interference of neighboring zones and slow response of temperature etc.). In this paper, feedback linearization method is applied to obtain a linear model of the reheating furnace. Then, controller is designed using simple predictive control method. The effectiveness of this strategy is shown through simulations.

  • PDF

Roll의 수명예측 model 개발

  • 배용환;장삼규;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.306-312
    • /
    • 1992
  • The prevention of roll breakage in hot rolling process is improtant to reduce maintenance cost and production loss. Rolling conditions such as the roll force and torque have been intensively studied to overcome the roll breakage. in the present work, a model for life prediction of work rolls under working condition was developed and discussed. The model consists of stress analysis, crack propagation, wear and fatigue calculation model. Roll life can be predicted by stress, crack depth and fatigue damage calculated from this model. The reliability of stress analysis is backed up by the FEM analysis. From the result of simulation using by pressent model, although the fatigue damage of back up roll reachs 80% of practical limit, that of workroll was less than 40%. In edge section of workroll stress amplification is found by wear and bender effect. We can judge that workroll failures are not due to fatigue damage, crack propagation by bending stress but stress amplification by wear and bender in present working condition.

Development of Flow Stress equation of High strength steel for automobile using Neural Network and Precision Roll Force Model (신경망 함수를 이용한 자동차강의 변형저항 개발 및 압연하중 예측)

  • Kwak W. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.145-152
    • /
    • 2004
  • The flow stress value was calculated by comparing predicted and measured roll force. Using basic on-line roll force model and logged mill data the flow stress equation of high strength steel for automobile was derived. The flow stress equation consists of the flow stress equation of carbon steel and flow stress factor calculated by neural network with input parameters not only carbon contents, strip temperature, strain, and strain rate, but also compositions such as Mn, p, Ti, Nb, and Mo. Using the flow stress equation and basic roll force model, precision roll force model of high strength steel for automobile was derived. Using test set of logged mill data the flow stress equation was verified.

  • PDF

Minimization of Crop Length by Sizing Press in Hot Rolling Mill (열간 조압연 공정에서 2단 사이징 프레스에 의한 크롭 최소화)

  • Heo, S.J.;Lee, S.H.;Lee, S.J.;Lee, J.B.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.619-626
    • /
    • 2008
  • In this study, design methodology to determine optimal shape of the anvil in sizing press process has been proposed to minimize crop length of the AISI 1010 slab in horizontal rolling after width reduction. Shape of anvil were selected to 12 cases by design of experiment, and the dog-bone shapes and the crop length were determined by FE-analysis. Also, the anvil shape, which has minimum crop length, were determined by artificial neural network(ANN). As a result of FE-analysis, it can be seen that the crop length was increased with increasing center thickness in the dog-bone shape after width reduction. The anvil shape which has minimum crop length, was estimated to ${\theta}_{1}=21^{\circ}{\theta}_{2}=14^{\circ}$ by FE-analysis and ANN.

A New Model for Predicting Width Spread in a Roughing Mill - Part I: Application to Dog-bone Shaped Inlet Cross (조압연 공정의 판 폭 퍼짐 예측 모델 - Part I : 도그 본 형상에 적용)

  • Lee, D.H.;Lee, K.B.;Hwang, S.M.
    • Transactions of Materials Processing
    • /
    • v.23 no.3
    • /
    • pp.139-144
    • /
    • 2014
  • In the current study, we present a new model for predicting width spread of a slab with a dog-bone shaped cross section during rolling in the roughing train of a hot strip mill. The approach is based on the extremum principle for a rigid plastic material and a three dimensional admissible velocity field. The upper bound theorem is used for calculating the width spread of the slab. The prediction accuracy of the proposed model is examined through comparison with the predictions from 3-D finite element (FE) process simulations.

An Investigation of Slab-FEM for Rolling Analysis (압연해석을 위한 슬래브-유한요소법에 대한 연구)

  • Song, Jung-Hoon;Park, Jong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3454-3462
    • /
    • 1996
  • Compared to a full three dimensional FEM, the Slab-FEM hybrid method reduces the required computation time distinctly and it can be applied to the analysis of a shape rolling process. However, the method is somewhat approximate and predictions by the method contain certain inaccuracies. In the present investigation a parameter called T-factor was introduced to compensate the inaccuracies of the method and proper values of the parameter were estimated for different widths of bars and reduction ratios. Then, the method was applied to analyze cold and hot rollings of rectangular bars and predicted results were compared to those of experiments. Nonuniform distributions of temperature in the bars were predicted by utilizing the temperature equation obtained for a semi-infinite solid under radiation and convection boundary conditions. It was found out that accuracies of spread and roll separating force predictions could be enhanced by using proper values of the T-factor.

An Implementation of the Labeling Auto.ation system for Hot-coils using a Robot Vision System (로봇비젼 시스템을 이용한 핫코일의 자동라벨링 시스템 구현)

  • Lee, Yong-Joong;Kim, Hak-Pom;Lee, Yang-Bum
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1266-1268
    • /
    • 1996
  • In this study an automatic roiling-coli labeling system using robot vision system and peripheral mechanism is proposed and implemented, which instead of the manual labor to attach labels Rolling-coils in a steel miil. The binary image process for the image processing is performed with the threshold, and the contour line is converted to the binary gradient which detects the discontinuous variation of brightness of rolling-coils. The moment invariants algorithm proposed by Hu is used to make it easy to recognize even when the position of the center are different from the trained data. The position error compensation algorithm of six degrees of freedom industrial robot manipulator is also developed and the data of the position of the center rolling-coils, which is obtained by floor mount camera, are transfered by asynchronous communication method. Therefore even if the position of center is changed, robot moves to the position of center and performs the labeling work successfully. Therefore, this system can be improved the safety and efficiency.

  • PDF