• 제목/요약/키워드: hot pressed wood

검색결과 11건 처리시간 0.02초

열압재목재(熱壓縡木材)의 동적점탄성(動的粘彈性) (Dynamic Viscoelasticity of Hot Pressed Wood)

  • 홍병화
    • Journal of the Korean Wood Science and Technology
    • /
    • 제12권4호
    • /
    • pp.3-10
    • /
    • 1984
  • In hot pressed wood of Pseudotsuga menziesii compressed to 0 - 50 percent at temperature 60 - $180^{\circ}C$, relative humidity conditions affecting dynamic Young's modulus of elasticity and internal friction were investigated. The results obtained are summarized as follows: Moisture absorption of the hot pressed wood decreased with increasing press temperature, but there was no effect on the amount of compression. Thickness swelling dereased with increasing press temperature, and increased with increasing amount of compression. In general, dynamic Young's modulus of elasticity showed a straight line with increasing specific gravity of specimens. Dynamic Young's modulus of elasticity decreased with increasing moisture content, but internal friction increased with increasing amount of moisture content. Dynamic Young's modulus of R specimens pressed in the radial direction showed hight values than T specimens pressed in the tangential direction.

  • PDF

Effect of Different Pressing Processes and Density on Dimensional Stability and Mechanical Properties of Bamboo Fiber-based Composites

  • Zhang, Ya-Hui;Huang, Yu-Xiang;Ma, Hong-Xia;Yu, Wen-Ji;Qi, Yue
    • Journal of the Korean Wood Science and Technology
    • /
    • 제46권4호
    • /
    • pp.355-361
    • /
    • 2018
  • In this study, the dimensional stability and mechanical properties of bamboo fiber-based composites (BFBCs) were studied at two pressing manufacturing processes, i.e., hot- and cold- pressing, and were compared with three density parameters (1.0, 1.1, and $1.2kg/m^3$). Width swelling ratio (WSR), thickness swelling ratio (TSR), and water absorption ratio (WAR) were calculated for water immersions of 4 and 28 h. WSR, TSR, and WAR for specimens immersed for 28 h were higher than those for 4 h treatment, which shows that the immersion time has a significant influence on the dimensional stabilities of BFBCs. Moreover, the positive linear relations between density and dimensional were observed at both the pressing ways, indicating that the WSR, TSR, and WAR decreased with an increase in the density of BFBCs. The compressive strength, shear strength, modulus of rupture (MOR), and modulus of elasticity (MOE) were determined. The compressive strength, MOR, and MOE of hot-pressed specimens were significantly higher than those for the cold-pressed specimens, which are also directly proportional to density. Moreover, the samples with the highest density of $1.2kg/m^3$ performed high values on mechanical properties in both the manufacturing methods.

파티클보드의 밀도경사와 흡음성 개선을 위한 열압기술 (Hot Pressing Technology for Improvement of Density Profile and Sound Absorption Capability of Particleboard)

  • 박희준;김현중
    • Journal of the Korean Wood Science and Technology
    • /
    • 제30권1호
    • /
    • pp.25-33
    • /
    • 2002
  • 파티클보드의 두께방향으로 밀도경사와 흡음성 개선을 위한 새로운 열압방식개발을 위하여 본 과제를 수행하였다. 적용한 열압방식으로는 기존의 평판가열식 열압방식(A-type pressing), 성형장치내 열압방식(B-type pressing), 그리고 성형장치내 요철카울을 설치한 열압방식(C-type pressing)을 적용하였다. 원료목질은 낙엽송 세이빙을 사용하였으며, 접착제로는 수용성 페놀-포름알데하이드 접착제를 사용하였다. 흡음성 개선을 위한 보드는 열압시 요철카울에 의하여 보드 이면에 계단형 공극을 생성하였다. 열압방식별 제조된 보드의 물리적 및 기계적 성질을 측정하였는 바, 성형장치내 열압을 함으로써 강도적 성능을 향상시킬 수 있는 것으로 나타났으며, 보드의 두께방향 밀도경사 역시 평균밀도에 대한 최소밀도의 비율이 90% 이상을 나타내어 기존의 평판가열식으로 제조한 보드 보다 크게 개선시킬 수 있는 것으로 나타났다. 또한 열압시 요철카울에 의하여 천공을 해 줌으로써 파티클보드의 흡음계수를 향상시킬 수 있는 것으로 나타남으로써 향후 저밀도 후판보드 제조가능성과 흡음재 등 새로운 건축내장재료로의 사용가능성을 확인하였다.

목질폐잔재를 재활용한 목질보도블록 제조기술 개발 (A Development of Manufacturing Process of Wooden Footpath Block to Reuse of Wood Waste)

  • 박희준
    • Journal of the Korean Wood Science and Technology
    • /
    • 제25권3호
    • /
    • pp.96-104
    • /
    • 1997
  • The objective of this research project was to develop the wooden footpath block to reuse of wood waste. Some physical and mechanical properties of the wooden block such as water absorption, thickness swelling, modulus of rupture, internal bond, density profile and impact resistance were studied. Water absorption and thickness swelling of the wooden block were greatly reduced when the wooden block was pressed inside the forming device than by conventional hot pressing. Also, Modulus of rupture and internal bond of the wooden block were increased greatly when the pressing was completed inside the forming device. The density profile of the wooden block was improved up to 93.5%, minimum to average density ratio. The wooden block manufactured in this study have excellent physical and mechanical prperties in comparison with existing wood based materials. So, these wooden blocks are applicable to footpth block or other exterior members.

  • PDF

Effect of Particle Pre-Treatment on Properties of Jatropha Fruit Hulls Particleboard

  • Iswanto, Apri Heri;Febrianto, Fauzi;Hadi, Yusuf Sudo;Ruhendi, Surdiding;Hermawan, Dede;Fatriasari, Widya
    • Journal of the Korean Wood Science and Technology
    • /
    • 제46권2호
    • /
    • pp.155-165
    • /
    • 2018
  • The objective of the research was to evaluate the effect of particle pre-treatment on physical, mechanical, and durability of jatropha fruit hulls (JFH) particleboard. The pre-treatments included were immersing in cold water, hot water, and acetic acid solution. After each treatment, the particles were dried up to 3% moisture content. Urea-formaldehyde (UF) resin was used to fabricate particleboards with board size, thickness and density target of 25 cm by 25 cm, 0.80 cm, and $0.70g/cm^3$, respectively. Board pressed at $130^{\circ}C$ for 10 minutes, and $25kg/cm^2$ pressure. The evaluation of particleboard followed the JIS A 5908-2003. Whilist their resistance to subterranean termite test (mass loss, mortality, antifeedant value and feeding rate) refers to the Indonesian standard (SNI 01.7207-2006). The physical and mechanical properties of particleboards showed that all pre-treatments decreased the pH of particles. Overall, all particle immersing treatments resulted of better physical and mechanical properties of particleboard than those of untreated ones. The acetic acid treatment resulted the best physical and mechanical properties of particleboard. Based on the mass loss of JFH particleboard, hot water and acetic acid treated particleboards were classified into weak resistance to subterranean attack. The other two treatments were classified into very weak resistance. Hot water treated particleboard provided the highest mortality and antifeedant as much as 87.40% and 34.20%, respectively. Based on antifeedant classification, hot water treated particleboards were classified into moderately strong resistance, while other treatments were categorized into weak resistance. The lowest feeding rate value ($45.30{\mu}g/termite/day$) was attained by hot water treatment.

대나무 Zephyr 보드의 제조에 있어서 열압시간과 열압온도가 보드성능에 미치는 영향 (Effect of Hot-Pressing Time and Temperature on Properties of Bamboo Zephyr Boards)

  • 정기호;김유정;노정관;박상진
    • Journal of the Korean Wood Science and Technology
    • /
    • 제31권2호
    • /
    • pp.77-83
    • /
    • 2003
  • 본 연구에서는 대나무 Zephyr 보드에 있어서 열압조건이 보드의 성능에 미치는 영향을 조사하기 위하여 다양한 열압시간과 열압온도를 적용하여 보드(목표밀도 0.7 g/cm3, 400×400×12 mm)를 제조하고 그 기본적인 물성을 비교, 검토해 보았다. 제조된 보드는 KS F 3104와 KS F 3113에 준하여 성능평가를 하였으며 그 결과는 다음과 같다. 보드의 상태 휨강도는 열압조건에 관계없이 전반적으로 상당히 높은 값을 나타내었으며 그 중 span에 대한 평행 방향에 있어서는 열판온도 160℃에서 12분 동안 열압하여 제조한 보드가 가장 높은 강도를 보였다. 보드의 박리강도 시험에서는 모든 열압시간에서 열압온도가 높을수록 상대적으로 더 높은 값을 나타내었으며, 그 결과 200℃에서 압체된 보드가 가장 높은 강도를 보였다. 보드의 습윤 휨강도 시험에서는 총 열압시간 12분과 10분일 때 각각 160℃와 180℃의 온도에서 제조된 보드가 상대적으로 높은 강도를 나타내었다. 더욱이, 200℃에서 8분 동안 열압하여 제조한 보드의 경우 상태 휨강도에 거의 육박하는 가장 높은 습윤 휨강도를 보였다. 두께 팽창율 시험에서는 모든 보드에서 전반적으로 6% 미만의 낮은 값을 나타내어 높은 치수안정성을 가지는 것을 알 수 있었다.

Physical-Mechanical Properties of Laminated Board Made from Oil Palm Trunk (Elaeis guineensis Jacq.) Waste with Various Lamina Compositions and Densifications

  • PRABUNINGRUM, Dita Sari;MASSIJAYA, Muh Yusram;HADI, Yusuf Sudo;ABDILLAH, Imam Busyra
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권2호
    • /
    • pp.196-205
    • /
    • 2020
  • The purpose of this study was to investigate a method for improving the physical and mechanical properties of laminated board made from oil palm trunk (OPT). The effects of pretreating the lamina with heat-pressure and altering the lamina composition of the laminated board were investigated. The outer third of OPT in cross-section had high-density wood, while the underlying third had low to medium density. The hot press was applied to pretreat the lamina that had low to medium density. The lamina were 1.5 cm in thickness, 5 cm in width, and 65 cm in length. The hot press was applied at 2.94 MPa or 4.41 MPa at 150 ℃ for 60 minutes, and the target thickness of the lamina was 1 cm. The three layers of the laminated board samples were bonded with isocyanate adhesive at a glue spread of 300 g/㎡ and cold pressed at 0.98 MPa for 3 h. The laminated board samples were tested according to Japanese Agricultural Standard (JAS) 234-2003. The results showed that the densification of the inner lamina did not significantly affect the physical-mechanical properties of the laminated board produced. However, the laminated board made with high-density laminas for the outer layers fulfilled the JAS 234-2003 standard for the modulus of elasticity and the modulus of rupture.

Properties of a New Adhesive Composed of Gambir-Sucrose

  • SUCIPTO, Tito;WIDYORINI, Ragil;PRAYITNO, Tibertius Agus;LUKMANDARU, Ganis
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권3호
    • /
    • pp.303-314
    • /
    • 2020
  • Gambir is a non-wood forest product with a potential of being used as wood adhesive, due to about 33% catechin in it. Meanwhile, catechins and sucrose have not been studied as adhesives. Therefore, basic characteristics of gambir-sucrose adhesives were investigated. In this research, adhesives were prepared by dissolving gambir and sucrose in distilled water, at different blending ratios of the gambir/sucrose such as 100/0, 75/25, 50/50, and 25/75 wt%. Furthermore, gas chromatography-mass spectrometry (GC-MS) was employed to determine the gambir chemical compositions, and Fourier transform-infrared (FTIR) spectroscopy was carried out to identify chemical bonds. Particleboards with a target density of 0.8 g/㎤ were then manufactured by hot-pressing for 10 min at 200℃. The internal bond (IB) strength of particleboard was subsequently measured. Based on the GC-MS analysis, 31.11% of catechin was identified. In addition, the viscosity, density, solid content, and gelation time of the adhesives, and insoluble matter content (IMC) in boiling water were 7.30~33.24 mPa.s, 1.2~1.3 g/㎤, 25.56~28.44%, 73~420 min, and 29.75~62.10%, respectively. Adding sucrose to the adhesive was observed to raise the IMC from 49.05 to 62.10%, at 180℃ and 200℃. FT-IR analysis showed that the gambir absorption peaks occurred at approximately 1620 cm-1, assigned to the C=O stretching of 5-hydroxymethylfurfural, which tended to increase with the addition of sucrose. The reaction between gambir and sucrose was observed in the form of the dimethylene ether bridge. The 25/75 wt% gambir-sucrose adhesives and 200℃ hot-pressed temperature resulted in the highest IB strength (0.89 MPa), and met the requirement of JIS A5908-2003 type 18. Consequently, the gambir-sucrose adhesive could be used as a particleboard adhesive.

Modified Densification Process for Increasing Strength Properties of Pine and Gmelina Wood from Community Forests

  • Yunianti, Andi Detti;Tirtayasa P., Kidung;Suhasman, Suhasman;Taskirawati, Ira;Agussalim, Agussalim;Muin, Musrizal
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권4호
    • /
    • pp.418-424
    • /
    • 2019
  • Densification is a process for improving the strength properties of wood from the felling of young trees, which is a common harvest practice in community forests. A series of experiments was conducted to refine the process with particular regard to the determination of suitable pretreatment and treatment conditions. Samples of pine and gmelina measuring $23cm(L){\times}20cm(W){\times}2cm(T)$ underwent pretreatment through immersion in a 1:1 $CH_3COOH-H_2O_2$ solution at concentrations of 15%, 20%, and 30%. Samples pretreated with the 20% solution showed the greatest improvement in strength; further experiments were conducted to determine the optimum treatment conditions in terms of temperature and duration following immersion. Test samples with the same dimensions as those in the pretreatment experiment were soaked in a 1:1 20% $CH_3COOH-H_2O_2$ solution and warmed in a water bath. The test samples were then individually hot pressed to the target thickness, which was 30% less than the original thickness and held at $150^{\circ}C$ or $170^{\circ}C$ for 15 or 30 minutes. The treated samples were cut for an analysis of their density, recovery of set, and bending strength. Pine and gmelina exhibited the best characteristics after treatment at $150^{\circ}C$ for 30 and 15 minutes, respectively. The results suggest that the modified densification process had increased the bending strength of the wood, but the temperature and duration of treatment must be carefully considered for different wood species.

구성형태(構成形態)에 따른 파티클과 파이버로 제조(製造)한 패널의 물리적 및 기계적 성질 (Physical and Mechanical Properties of Panels Fabricated with Particle and Fiber by Composition Types)

  • 윤형운;이필우
    • Journal of the Korean Wood Science and Technology
    • /
    • 제20권2호
    • /
    • pp.9-22
    • /
    • 1992
  • The aim of this research was to investigate physical and mechanical properties of various composition panels, each fabricated with a ratio of fiber to particle of 2 to 10. Type A consisted of fiber-faces and particle-core in layered-mat system. Type B consisted of fiberboard-faces on particleboard-core. Type C consisted of fibers and particles in mixed-mat system. The results obtained from tests of bending strength, internal bond, screw holding strength and stability were as follows: 1. The bending strength and internal bonding of both the Type A panel and the Type B panel were higher than those of the Type C panel and three-layered particle board. 2. The mechanical properties of the Type C panel showed the lowest values of all composition methods. It seems that the different compression ratios of the particle and fiber interrupted the densification of the fibers when hot pressed. 3. The dimensional stability of layered-mat system panels consising of fiber-faces and particle-core was better the than control particleboard. 4. In composition methods of particle and fiber, layered-composition method was more resonable than mixed-composition. The Type B panel had the highest mechanical properties of all the composition types. 5. The Type A panel was considered the ideal composition method because of its resistance to delamination between the particle-layer and the fiber-layer and because of its lower adhesive content and more effective manufa cturing process.

  • PDF