• Title/Summary/Keyword: hot press

Search Result 499, Processing Time 0.024 seconds

Design of Hot Heading Process and Evaluation of Mechanical Properties of Alloy718 Coupling Bolt for Gas Turbine (가스터빈용 Alloy718 커플링볼트의 열간 헤딩 공정설계 및 기계적 특성 평가)

  • Choi, H.S.;Lee, J.M.;Ko, D.C.;Lee, S.B.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.189-196
    • /
    • 2008
  • Alloy718 is the nickel-base super alloy well used as gas turbine components under severe operating conditions because of its high strength at high temperature and excellent creep resistance. In this study, a coupling bolt for the gas turbine component is manufactured by hot heading process instead of whole machining in order to improve the mechanical properties. Die shape for the hot heading has been designed by general design rule of hot forging and also optimal process condition has been investigated by finite element method. The initial billet temperature and the punch speed have been determined by $1150^{\circ}C$ and 600mm/s on the basis of finite element analysis, respectively. The coupling bolt has been manufactured by 200ton screw press and evaluated by experiment in order to investigate the mechanical properties. As a result of experiment, the mechanical properties such as hardness, tensile strength and creep behavior have been superior to those manufactured by machining.

Effects of Hot Pressing Condition on the Properties of SiCf/SiC Composites (SiCf/SiC 복합체의 특성에 미치는 열간가압소결 조건의 영향)

  • Noviyanto, Alfian;Yoon, Dang-Hyok
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.335-341
    • /
    • 2011
  • Continuous SiC fiber-reinforced SiC-matrix composites ($SiC_f$/SiC) had been fabricated by electrophoretic infiltration combined with ultrasonication. Nano-sized ${\beta}$-SiC added with 12 wt% of $Al_2O_3-Y_2O_3$ additive and Tyranno$^{TM}$-SA3 fabric were used as a matrix phase and fiber reinforcement, respectively. After hot pressing at 5 different conditions, the density, microstructure and mechanical properties of $SiC_f$/SiC were characterized. Hot pressing at relatively severe conditions, such as $1750^{\circ}C$ for 1 and 2 h, resulted in a brittle fracture behavior due to the strong fiber-matrix interface in spite of their high flexural strength. On the other hand, toughened $SiC_f$/SiC composite could be achieved by hot pressing at milder condition because of the formation of weak interface in spite of the decreased flexural strength. These results proposed the importance of weak fiber-matrix interface in the fabrication of ductile $SiC_f$/SiC composite.

Optimization of Hot Forging Process Using Six Sigma Scheme and Computer Simulation Technology Considering Required Metal Flow Lines (6 시그마 기법과 컴퓨터 시뮬레이션 기술을 이용한 금속 유동선도를 고려한 열간 단조공정의 최적화)

  • Moon H. K.;Moon S. C.;Joun M. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.199-202
    • /
    • 2005
  • In this paper, the six sigma scheme is employed together with the rigid-viscoplastic finite element method to obtain the optimal metal flow lines in hot press forging. In general, the six sigma process is consisted of following five steps : define, measure, analyze, improve and control. Each step Is investigated in detail to meet customer's requirements through improvement of product quality. A forging simulator, AFDEX-2D, is used for analysis of the metal flow lines of a multi-stage hot forging process under various conditions of major factors, determined at each step of the six sigma process. The analyzed results are examined in order to reveal the effects of major factors on the metal flow lines and the formed shapes. The effects are used to find an optimal process and the optimal process with die is devised and tested. The comparison between required metal flow lines and experiments shows that the approach is effective for optimal process in hot forging design considering metal flow lines.

  • PDF

The Study on Weldability of Boron Steel and Hot-Stamped Steel by Using Laser Heat Source (III) - Comparison on Laser Weldability of Boron Steel and Hot-Stamped Steel - (레이저 열원을 이용한 보론강 및 핫스탬핑강의 용접특성에 관한 연구 (III) - 보론강 및 핫스탬핑강의 레이저 용접특성 비교 -)

  • Choi, So Young;Kim, Jong Do;Kim, Jong Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.89-94
    • /
    • 2015
  • This study was conducted to compare the laser weldability of boron steel and hot-stamped steel. In general, boron steel is used in the hot-stamping process. Hot-stamping is a method for simultaneously forming and cooling boron steel in a press die after heating it to the austenitizing temperature. Hot-stamped steel has a strength of 1500 MPa or more. Thus, in this study, the laser weldability of boron steel and thet of hot-stamped steel were investigated and compared. A continuous wave disk laser was used to produce butt and lap joints. In the butt welding, the critical cooling speed at which full penetration was obtained in the hot-stamped steel was lower than that of boron steel. In the lap welding, the joint widths were similar regardless of the welding speed when full penetration was obtained.

Distribution Model Based on Computer Simulation for Internal Temperature and Moisture Content in Press Drying of Tree Disks (원판(圓板)의 열판건조(熱板乾燥)에서 컴퓨터 시뮬레이션에 의한 내부온도(內部溫度)와 함수율(含水率) 분포모형(分布模型))

  • Yeo, Hwan-Myeong;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.61-70
    • /
    • 1994
  • This study was executed to find the applicability of press drying of tree disk by investigating the shrinkage and drying defect and to form appropriate model by comparing the actual moisture content(MC) and internal temperature in respect of drying time with calculated values based computer simulation to which was applied finite difference method. In press drying disk, heating period, constant drying rate period maintained plateau temperature at 100$^{\circ}C$ and falling drying rate period were significantly distinguished. Actual MC and internal temperature were analogous to those calculated at comparing points. Heat transfer model formed by Fourier's law using specific heat of moist wood and conduction coefficient considering fractional volume of each element of wood cell wall, bound water, free water and air showed applicability as basic data to developing heat expansion, shrinkage and drying stress during press drying. Also mass transfer model formed by Fick's diffusion law using water vapor diffusion coefficient showed applicability. Longitudinal shrinkage was developed by pressure of hot press and tangential shrinkage was restrained by hygrothermal recovery. The heart check, surface check and ring failure were occurred differently in species, but V-shaped crack didn't develop.

  • PDF

Research on rib-to-diaphragm welded connection by means of hot spot stress approach

  • Wang, Binhua;Lu, Pengmin;Shao, Yuhong
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.135-148
    • /
    • 2015
  • The cutout hole locating at the place of rib-to-diaphragm welded connection is adopted to minimize the restraint, which is caused by the floor-beam web to rib rotation at the support due to the unsymmetrical loads in orthotropic deck. In practice, an inevitable problem is that there is a large number of welding joint's cracks formed at the edge of cutout hole. In this study, a comparative experiment is carried out with two types of cutout hole, the circular arc transition and the vertical transition. The fatigue life estimation of specimens is investigated with the application of the structural hot spot stress approach by finite element analyses. The results are compared with the ones of the fatigue tests which are carried out on these full-scale specimens. Factors affecting the stress range are also studied.

Die-Speed Optimization in Titanium-Disk Near-Net Shape Hot-Forging (티타늄디스크 근사정형 열간단조시 금형속도의 최적화)

  • 박종진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.896-907
    • /
    • 1995
  • Titanium 6242(.alpha. + .betha.) alloy has a good strength/weight ratio and is used for aircraft components such as engine disks and compressor blades. When this material is forged at an elevated temperature, the process parameters should be carefully controlled because the process window of this material is quite narrow. In the present investigation, a rigid-thermoviscoplastic finite element method is used to predict the deformation behavior and temperature/strain distributions in an engine disk during near-net shape hot forging. The purpose of the investigation is to obtain a proper ram speed profile, assuming the hydraulic press used in the forging is capable of varying ram speed during loading. In result, it was found that the ram speed at constant strain-rate of 0.5/sec shows a sound deformation behavior, a relatively uniform deformation and a good temperature distribution. This information is also valuable in predicting resulting microstructures in the disk.

Sintering of Zriconium Diboride through Fe-based Liquid Phase (철계 액상을 통한 붕화지르코늄의 소결)

  • 우상국;한인섭;김흥수;양준환;강을손;김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.3
    • /
    • pp.259-268
    • /
    • 1996
  • In the present study the effect of the addition of Fe on the pressureless and hot press sintering behavior was studied under Ar atmosphere. Pressureless sintering was performed 1900~220$0^{\circ}C$ under. Ar atmosphere. The addition of 1 wt% Fe was increased effectively of the sintered density. However it was impossible to obtain high density higher than 90%,. Zr-Fe-B compound in liquid phase was observed from the EDS and WDS analysis. It was considered that sinterability was enhanced due to the mass transfer through Fe based liquid phase formed at the sintering temperature. Hot pressing was performed at 1600~1$700^{\circ}C$ under Ar atmos-phere for 1 hr. It was possible obtain 95% relative density of ZrB2 specimen which is higher density at pressure-less sintering. It could be thought that ZrB2 particles was rearranged through liquid phase by applied pressure during initial stage of sintering.

  • PDF

Integration Forming Technology based on Cold Hot Forging of Clutch Jaw Parts for Farm Machinery (냉열간 단조기술을 적용한 농기계용 클러치 Jaw 부품 일체화 성형기술)

  • Park, Dong-Hwan;Han, Seong-Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.489-495
    • /
    • 2015
  • Forging is a manufacturing process involving the shaping of metal using localized compressive forces and the process of deforming metal into a predetermined shape using certain tools and press according to the temperature. Forging provides stronger metal parts than that possible by casting or machining. Conventional clutch jaw parts have been developed through cold forging and precision machining; however, fabrication of integral clutch jaw parts for farm machinery has not been reported yet. These parts were developed by applying a complex forging technology combining cold and hot forging. The integrated forming technology proposed in this study will be useful for reducing the lead-time for manufacturing, improving the accuracy of products, and eliminating the welding process.

Sintering Characterization of Hot-Pressed SiC Prepared by SHS Microwave Method (SHS Microwave 법으로 합성한 SiC 분말의 고온가압 소결특성)

  • 김도경;안주삼;김익진;이형복
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.8
    • /
    • pp.865-872
    • /
    • 1995
  • Ultra-fine $\beta$-SiC powders were fabricated by self-propagating high temperature synthesis process (SHS) using microwave oven. The flexural strength, fracture toughness, and hardness of hot pressed sample at 200$0^{\circ}C$ for 60 min using synthesized SiC powders, which had 2 wt% of Al2O3 and 2.5 wt% of B4C content, showed 438 MPa, 4.15MPa.m1/2 and 28 GPa, respectively. The highest strength, fracture toughness, and hardness of composites containing 4wt% of Al2O3, which had highest relative density of 99.9%, showed 458 MPa, 4.6MPa.m1/2 and 36.2 GPa, respectively.

  • PDF