• 제목/요약/키워드: hot forming

검색결과 450건 처리시간 0.024초

핫프레스 포밍 공정에서의 열전달 특성에 대한 연구 (Study on Heat Transfer Characteristic in Hot Press Forming Process)

  • 이승열;이경훈;임용희;정우창
    • 소성∙가공
    • /
    • 제22권2호
    • /
    • pp.101-107
    • /
    • 2013
  • The heat transfer characteristics between die and sheet and die and coolant are important parameters in hot press forming process. The determination of the quenching time that guarantees full martensitic transformation requires proper understanding of these heat transfer characteristics. The contact area changes drastically during the quenching process due to volume changes of both die and sheet by temperature drop as well as phase transformation. Several types of modeling techniques are tested in order to select the most suitable. The effect of quenching time as well as die heat conductivity on martensitic transformation is investigated and predictions are compared to experimental results.

냉열간 단조기술을 적용한 농기계용 클러치 Jaw 부품 일체화 성형기술 (Integration Forming Technology based on Cold Hot Forging of Clutch Jaw Parts for Farm Machinery)

  • 박동환;한성철
    • 한국생산제조학회지
    • /
    • 제24권5호
    • /
    • pp.489-495
    • /
    • 2015
  • Forging is a manufacturing process involving the shaping of metal using localized compressive forces and the process of deforming metal into a predetermined shape using certain tools and press according to the temperature. Forging provides stronger metal parts than that possible by casting or machining. Conventional clutch jaw parts have been developed through cold forging and precision machining; however, fabrication of integral clutch jaw parts for farm machinery has not been reported yet. These parts were developed by applying a complex forging technology combining cold and hot forging. The integrated forming technology proposed in this study will be useful for reducing the lead-time for manufacturing, improving the accuracy of products, and eliminating the welding process.

무거운 별 탄생 지역인 DR21(OH) 천체에 대한 중수소화된 메탄올(CH3OD) 관측연구 (DEUTERATED METHANOL (CH3OD) IN THE HOT CORE OF THE MASSIVE STAR-FORMING REGION DR21 (OH))

  • 민영철
    • 천문학논총
    • /
    • 제29권2호
    • /
    • pp.29-34
    • /
    • 2014
  • We have observed the deuterated methanol, $CH_3OD$, toward the hot core MM1 in the massive star-forming region DR21 (OH) using the Submillimeter Array with a high angular resolution of about 1 arcsecond. The position of the hot core associated with the sub-core MM1a was confirmed to coincide with the continuum peak where an embedded young stellar object is located. The column density of $CH_3OD$ was found to be about $(2{\pm}1){\times}10^{16}cm^{-2}$ toward the MM1a center. The abundance ratio $CH_3OD/CH_3OH$ was measured to be ~ 0.45, which is about the median value for low mass star-forming cores but much larger than those of the massive star-forming cores. The ratio is believed to change depending on, for example, the chemical condition, the temperature and the density of the source. This ratio may further depend on the evolutionary phase especially in the massive-star-forming cores. The sub-core MM1a is thought to be in the very early phase of star formation. This large abundance ratio found in this source indicates that even the massive star-forming cores, during a relatively short period in the very early stage of star formation, may also show a chemical state resulted from the cold and dense pre-collapsing phase, the enhanced deuteration as found in low mass star-forming cores.

Ti-6Al-4V합금의 열간 후방압출에 대한 성형 안정성 평가모델의 고찰 (Investigation of Forming Stabilities Criteria in Hot Backward Extrusion of Ti-6Al-4V)

  • 염종택;박노광;이유환;신태진;황상무;홍성석;심인옥;이종수
    • 한국군사과학기술학회지
    • /
    • 제7권3호
    • /
    • pp.84-92
    • /
    • 2004
  • The metal forming behavior of Ti-6Al-4V tube during hot backward extrusion was investigated with various forming stabilities or instabilities criteria. that is, Ziegler's instability criterion, dynamic materials model(DMM) stability criteria and Rao's instability criterion. These approaches also were coupled to the internal variables generated from FE simulation. In order to validate the reliabilities of three criteria, hot backward extrusions for Ti-6Al-4V tube making were carried out with different backward extrusion designs. The useful model for predicting the forming defects was suggested through the comparison between experimental observations and simulation results.

파티클보드의 밀도경사와 흡음성 개선을 위한 열압기술 (Hot Pressing Technology for Improvement of Density Profile and Sound Absorption Capability of Particleboard)

  • 박희준;김현중
    • Journal of the Korean Wood Science and Technology
    • /
    • 제30권1호
    • /
    • pp.25-33
    • /
    • 2002
  • 파티클보드의 두께방향으로 밀도경사와 흡음성 개선을 위한 새로운 열압방식개발을 위하여 본 과제를 수행하였다. 적용한 열압방식으로는 기존의 평판가열식 열압방식(A-type pressing), 성형장치내 열압방식(B-type pressing), 그리고 성형장치내 요철카울을 설치한 열압방식(C-type pressing)을 적용하였다. 원료목질은 낙엽송 세이빙을 사용하였으며, 접착제로는 수용성 페놀-포름알데하이드 접착제를 사용하였다. 흡음성 개선을 위한 보드는 열압시 요철카울에 의하여 보드 이면에 계단형 공극을 생성하였다. 열압방식별 제조된 보드의 물리적 및 기계적 성질을 측정하였는 바, 성형장치내 열압을 함으로써 강도적 성능을 향상시킬 수 있는 것으로 나타났으며, 보드의 두께방향 밀도경사 역시 평균밀도에 대한 최소밀도의 비율이 90% 이상을 나타내어 기존의 평판가열식으로 제조한 보드 보다 크게 개선시킬 수 있는 것으로 나타났다. 또한 열압시 요철카울에 의하여 천공을 해 줌으로써 파티클보드의 흡음계수를 향상시킬 수 있는 것으로 나타남으로써 향후 저밀도 후판보드 제조가능성과 흡음재 등 새로운 건축내장재료로의 사용가능성을 확인하였다.

통계적 기법을 활용한 플랜지형 휠베어링의 열간단조 공정 최적화 (Optimization of Hot Forging Process of Flange Type Wheel Bearings by Statistical Technique)

  • 이재성;문호근;송복한;허보영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.434-437
    • /
    • 2006
  • Due to the shape of spindle with small diameter and heavy section, rapid cooling is difficult. It is difficult to fabricate the tapered wheel bearings with fine microstructure. Thus, their mechanical characteristics, such as yield strength and fatigue resistance, decrease. Producing the tapered wheel bearings with good workability during orbital forming after hot forging, hot forging process with several process parameters was optimized by means of statistical technique of Six-Sigma scheme. As a result, the lower heating temperature is, the lower the hardness and yield strength of forgings are. Also, the faster conveyer velocity is, the lower the hardness and yield strength of forgings are. To avoid therefore occurrence of the surface rupture during orbital forming, the heating temperature should be controlled as low as possible and the conveyer velocity should be controlled as fast as possible.

  • PDF

열간 후방압출된 Ti-6Al-4V 튜브의 성형결함 해석 (Assessement of Forming Defects in Hot Backward Extruded Ti-6Al-4V Tube)

  • 염종택;심인규;나영상;박노광;홍성석;심인옥
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.347-350
    • /
    • 2003
  • The metal forming behavior and defect formation in Ti-6Al-4V tube during hot backward extrusion were investigated. To predict the forming-defects such as shear band, inner cracks or surface cracks, dynamic material model(DMM) including Ziegler's instability criterion and modified Cockcroft-Latham fracture criterion(C-L model) were used. These models were coupled to the internal variables generated from FE analysis. The chilling effect and friction indicated a great influence on the deformation mode of the tube and the formation of surface cracks. The simulation results for the backward extrusion were compared with the experimental observations.

  • PDF

냉간압출을 이용한 롱넥 플랜지 성형에 대한 공정설계 (Process Sequence Design of Longneck Flange by Cold Extrusion Process)

  • 임중연;황병복;김철식
    • 소성∙가공
    • /
    • 제8권2호
    • /
    • pp.160-168
    • /
    • 1999
  • This paper is concerned with the process sequence design of longneck flange forming by using cold extrusion with thick hollow pipe. The conventional hot forming process to produce a longneck flange is investigated by thermo-viscoplastic finite element method to observe the metal flow in detail and evaluate design requirements. Based on the results of simulation of the current hot forming process, design strategy for improving the process sequence are developed using the thick hollow pipe. The main goal is to obtain an appropriate improved process sequence which can produce the required product most economically without tensile cracking, workpiece buckling, and overloading of tools. Newly process condition such as semi-die angle, reductio ratio of cross-sectional area of axisymmetrical extrusion process. The final designed process can provide very useful guidelines to other flange forming industries.

  • PDF

자동변속기 이너레이스 스플라인 치형의 정밀열간단조 공정에 관한 연구 (A study on the precision hot forging process for spline teeth of inner-race in auto-transmission)

  • 김현수;이정환;김현필;김용조;강성훈
    • Design & Manufacturing
    • /
    • 제6권2호
    • /
    • pp.24-30
    • /
    • 2012
  • In this study, the hot forging technology for precision forming of spline teeth of the inner race in the auto-transmission was developed in order to minimize its finishing allowance. Several blocker and finisher shapes for the precision hot forging process of the inner race were proposed and the forging processes were analyzed using the three-dimensional finite element method. The optimum hot forging process was obtained considering some parameters such as metal flow patterns, forging defects and forming load. Blocker and finisher dies for the hot forging process were designed by selecting the most suitable shapes obtained from the finite element analysis. Experimental works were also performed in order to verify the optimum design of hot forging process.

  • PDF

변형 공정지도를 활용한 A350 LF2 합금의 최적성형 조건설계에 대한 연구 (Optimum forming design of A350 LF2 alloy using the deformation processing map)

  • 정은정;염종택;김정한;이동근;박노광
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.168-171
    • /
    • 2006
  • Hot deformation behavior of A350 LF2 alloy was characterized by compression tests in the temperature range of 800-$1250^{\circ}C$ and the strain rate range of $0.001-10s^{-1}$. The microstructural evolution during hot compression was investigated and deformation mechanisms were analyzed by constructing processing map. Processing maps were generated using the dynamic material model (DMM). The combination of dynamic material model and Ziegler's instability criterion was applied to predict an optimum condition and unstable regions for hot forming.

  • PDF