• Title/Summary/Keyword: hot crack

Search Result 242, Processing Time 0.025 seconds

The Strength and Fracture Behavior characteristics of Irradiated Zr-2.5Nb CANDU Pressure Tube Materials (Zr-2.5Nb 중수로 압력관의 조사후 강도 및 파괴거동 특성)

  • An, Sang-Bok;Kim, Yeong-Seok;Kim, Jeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.510-519
    • /
    • 2001
  • The tensile and fracture toughness tests have been conducted to investigate the degradations of mechanical properties induced mainly by neutron irradiations in Zr-2.5Nb CANDU pressure tube materials operated in Wolsung Unit-1. the tests were performed at room, 150, 200, 250, 300 $\^{C}$ for the irradiated and unirradiated specimens in hot cell. The specimens were directly machined from the tube retaining original curvature using specially designed electric discharge machine(EDM). From the tensile tests of the irradiated specimens, it was found that tensile strength was increased and total elongation was decreased compared to those of the unirradiated ones. The active voltages in the fracture toughness tests for the irradiated showed the discontinuous abrupt increases caused by crack jumping in lower temperature. In the crack resistance curves we found the stable crack growth in the unirradiated, whereas the unstable and three crack growth stages in the irradiated specimens due to the accumulated irradiation defects. The various fracture characteristic values in the irradiated are remarkably lower than those of the unirradiated. Through the fractography, we found in the irradiated that smaller dimple and shorter fissures than the unirradiated, and that the fractured surface had three regions that were flat, transition and slant/shear area. These can explain the difference in the crack growth characteristic values of the irradiated and the unirradiated ones.

Study on technique development for the solidified body of rock waste and evaluation of fracture toughness (암석폐재의 고화체 합성기술의 개발과 파괴인성평가에 관한 연구)

  • Na, Eui-Gyun;Yu, Hyosun;Kim, Jin-Yong;Lee, Jeong-Gee;Chung, Se-Hi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1452-1461
    • /
    • 1997
  • The hot press apparatus to obtain the solidified rocks with 60mm of diameter against rock waste was developed, and the optimum conditions for solidification were founded out, of which were 300.deg. C of temperature and 1hr of holding time. The solidified rocks reinforced with the fibers (carbon, steel) were made by means of a hydrothermal hot press method. Fracture toughness of those was obtained using the round compact tension(RCT) specimens. Load and displacement behaviours of the solidified rocks reinforced with the fibers were dependent upon the fiber volume fraction and kind of the fibers. Strength and fracture energy of the solidified rocks with steel were much larger than those of the solidified ones with carbon because of the Bridge's effect, multiple cracking and crack branching phenomena.

Structural safety reliability of concrete buildings of HTR-PM in accidental double-ended break of hot gas ducts

  • Guo, Quanquan;Wang, Shaoxu;Chen, Shenggang;Sun, Yunlong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1051-1065
    • /
    • 2020
  • Safety analysis of nuclear power plant (NPP) especially in accident conditions is a basic and necessary issue for applications and commercialization of reactors. Many previous researches and development works have been conducted. However, most achievements focused on the safety reliability of primary pressure system vessels. Few literatures studied the structural safety of huge concrete structures surrounding primary pressure system, especially for the fourth generation NPP which allows existing of through cracks. In this paper, structural safety reliability of concrete structures of HTR-PM in accidental double-ended break of hot gas ducts was studied by Exceedance Probability Method. It was calculated by Monte Carlo approaches applying numerical simulations by Abaqus. Damage parameters were proposed and used to define the property of concrete, which can perfectly describe the crack state of concrete structures. Calculation results indicated that functional failure determined by deterministic safety analysis was decided by the crack resistance capability of containment buildings, whereas the bearing capacity of concrete structures possess a high safety margin. The failure probability of concrete structures during an accident of double-ended break of hot gas ducts will be 31.18%. Adding the consideration the contingency occurrence probability of the accident, probability of functional failure is sufficiently low.

Deterministic Fracture Mechanics Analysis of Nuclear Reactor Pressure Vessel Under Rot Leg Leak Accident (고온관 누설에 의한 가압열충격 사고시 원자로 용기의 건전성 평가를 위한 결정론적 파괴역학 해석)

  • Lee, Sang-Min;Choi, Jae-Boong;Kim, Young-Jin;Park, Youn-Won;Jhung, Myung-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2219-2227
    • /
    • 2002
  • In a nuclear power plant, reactor pressure vessel (RPV) is the primary pressure boundary component that must be protected against failure. The neutron irradiation on RPV in the beltline region, however, tends to cause localized damage accumulation, leading to crack initiation and propagation which raises RPV integrity issues. The objective of this paper is to estimate the integrity of RPV under hot leg leaking accident by applying the finite element analysis. In this paper, a parametric study was performed for various crack configurations based on 3-dimensional finite element models. The crack configuration, the crack orientation, the crack aspect ratio and the clad thickness were considered in the parametric study. The effect of these parameters on the maximum allowable nil-ductility transition reference temperature ($(RT_{NDT})$) was investigated on the basis of finite element analyses.

The Electrical Characteristics of PV Module by the Stress in accordance with Mechanical Weight Load (기계적 하중에 따른 스트레스로 인한 PV 모듈의 전기적 특성)

  • Kong, Ji-Hyun;Ji, Yang-Geun;Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Geun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.104-109
    • /
    • 2009
  • If the Photovoltaic(PV) Module should get physical load, the PV module will be warped according to elongation of the front glass and then micro-crack will be occurred in the heat sealed Solar Cell. This micro-crack drops output of the short circuit current and the open circuit voltage of the PV Module. This is because of increase of resistance component by micro-crack. Micro-crack at specific Solar Cell in the module reduces the durability of PV Module such as less output, Hot-Spot in the PV module caused by Solar Cell output mismatch, heat generating as resistance component caused by micro-crack. In this study, among some factors which effect to the output of crystalline PV Module, we will see how the micro-crack caused by mechanical stress effects to the electrical output of PV Module.

  • PDF

Estimation for the Distribution of Creep Crack Growth Coefficients by Probabilistic Assessment (확률적 방법에 의한 크리프 균열성장 계수의 분포 추정)

  • Lee, Sang-Ho;Yoon, Kee-Bong;Choe, Byung-Hak;Min, Doo-Sik;Ahn, Jong Seok;Lee, Gil Jae;Kim, Sun-Hwa
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.9
    • /
    • pp.791-797
    • /
    • 2010
  • The creep crack growth rate (da/dt) of the Cr-Mo steels tested by pre-crack and the voltage (or resistance) variables were related into fracture parameter (Ct), crack growth coefficient (H), and an exponent (q) in the parts of Base, weld and HAZ. The fracture parameter (Ct) has various variables relating to the specimen and crack shape, applied stress, and creep strain curve. The H and q was inferred by OLS regression (ordinary least square method), and the H values were solved in statistics and probability assessment, which were attained fromPDF's distributions (probability density function). The HAZ part has the highest value of q by OLS regression and the widest distribution of H by PDF of WEIBULL, which means that the crack sensitivity of HAZ should be cautioned against the creep crack growth and failure.

Recent Trends in Flat Hot Rolling of Steel (열간 압연판재 제조기술의 최신동향)

  • 이준정
    • Transactions of Materials Processing
    • /
    • v.11 no.1
    • /
    • pp.24-35
    • /
    • 2002
  • Recent trend and future prospect of flat rolling of steel has been summarized based on the earlier reports. Key technology in the plate rolling is to have ultra fine microstructure having high resistance against crack propagation during application. Heavy accelerated cooling facility and high power rolling mill will be helpful to develope the high toughness steel. Precise modeling of properly prediction based on deformation and transformation imposed on microstructure of steel during processing is highly anticipated. For the hot strip rolling process, new trend is lies on the production of ultra-thin gauged hot strip to substitute cold rolled strip. For the substitution of cold rolled strip into hot rolled strip widely, high formable property of hot strip is highly required. For the formabilit, the ferritic rolling of extra low carbon steel under high lubricated condition is essential. Recently introduced semi-continuous thin slab and rolling mill line is very plausible to develope those kinds of products easily In the view groin facility combination. New idea to modify the existing continuous hot strip mill line to produce the ultra thin-gauged hot strip in an economic way is suggested in this report.

Evaluation of die life during hot forging process (열간 단조 공정의 금형 수명 평가)

  • 이현철;박태준;고대철;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1051-1055
    • /
    • 1997
  • Hot forging is widely used in the manufacturing of automotive component. The mechanical, thermal load and thermal softening which is happened by the high temperature die in hot forging. Tool life of hot forging decreases considerably due to the softening of the surface layer of a tool caused by a high thermal load and long contact time between the tool and workpieces. The service life of tools in hot forging process is to a large extent limited by wear, heat crack, plastic deformation. These are one of the main factors affecting die accuracy and tool life. It is desired to predict tool life by developing life prediction method by FE-simulation. Lots of researches have been done into the life prediction of cold forming die, and the results of those researches were trustworthy, but there have been little applications of hot forming die. That is because hot forming process has many factors influencing tool life, and there was not accurate in-process data. In this research, life prediction of hot forming die by wear analysis and plastic deformation has been carried out. To predict tool life, by experiment of tempering of die, tempering curve was obtained and hardness express a function of main tempering curve.

  • PDF

The Consideration of the Damage in Gas Turbine Hot Parts for Repair Bonding Process (가스터빈 고온부품의 재생 접합을 위한 손상부 파악)

  • Kim, S.W.;Choi, C.;Kim, J.C.;Lee, C.H.
    • Journal of Power System Engineering
    • /
    • v.7 no.2
    • /
    • pp.73-79
    • /
    • 2003
  • The present study was aimed at analysing the damage of a used gas turbine bucket after 39,500h of total service. Microstructures and cracks of service-induced bucket were observed. The crack might have initiated from the coating in the bucket surface by thermal fatigue and propagated into the GTD111 base metal. Maximum depth of penetration was 2.7 mm(full penetration) at the leading edge. Crack contains a lot of Cr-,Ti-,Al-oxide which will prohibit filling and wetting of insert metal. Depth and propagation direction of crack were accorded with centrifugal force and temperature distribution in turbine bucket. Present result will provide basic data for repair bonding process.

  • PDF

Study of Edge Crack Growth According to Rolling Condition in Cold Rolling (냉간압연공정에서 공정변수에 따른 엣지 크랙 성장에 관한 연구)

  • Cui, X.Z.;Lee, S.H.;Lee, S.J.;Lee, J.B.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.5
    • /
    • pp.377-384
    • /
    • 2009
  • The shape of edge cracking in rolling process generally occurred "V" shape. This cracking is successively generated at width edge of strip. The edge cracking is developed to center of strip during rolling process. In the results, the strip is occurred fracture, and the productivity is gone down because of the extensive production time. Accordingly, we need to control crack propagation during rolling process. But, the control of cracking is very difficult in rolling process. Previously the studies of edge cracking were mainly performed on hot rolling process. In this paper, the shape of the edge cracking in rolling was estimated according to process conditions such as initial edge crack size, reduction ratio and tension using FE-simulation and the simplicity experiments on cold rolling process.