• 제목/요약/키워드: hot crack

검색결과 242건 처리시간 0.03초

보론 첨가강에서 연주 냉각속도가 고온연성에 미치는 영향 연구 (주편 코너 크랙 발생 방지 방안 확보 연구) (Effect of cooling rate on the hot ductility of boron bearing steel during continuous casting (Study for prevention of corner crack on continuous casting slab))

  • 조경철;구양모;박중길
    • 대한금속재료학회지
    • /
    • 제46권6호
    • /
    • pp.329-337
    • /
    • 2008
  • During the continuous casting of boron-bearing steel, the corner cracks on the slab are formed by deformation with low strain rate and rapid cooling at the unbending temperature within the range of 800- $1000^{\circ}C$. Especially, the rapid cooling in the corner of slab during the continuous casting leads to as corner cracking. Therefore, in this study, the hot tensile tests applied to the different cooling rates were taken into account in order to study the effect of cooling rate on the hot ductility of boron-bearing steel. The results revealed that increasing cooling rate deteriorate the hot ductility of boron- bearing steel. Rapid decreasing of the hot ductility is caused by formation of a film-like ferrite and precipitate at the austenite grain boundaries. The morphology of the precipitates in the boron-bearing steel was monitored by PTA (Particle Tracking Autoradiography) and TEM, we observed MnS and BN compound and their morphology was quite different depending on the cooling rates. When the cooling rate is increased, rodshape MnS and BN precipitates can be formed along the austenite grain boundaries. It can cause that weakening the boundary region and decreasing the hot ductility of boron-bearing steel.

콘코리트 중의 염화물 침투에 영향을 미치는 균열폭에 대한 고찰 (The Investigation of Crack widths for the Effect of Cracks on Chloride Penetration of Concrete)

  • 윤인석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.945-948
    • /
    • 2006
  • Chloride penetration into concrete is a hot issue of concern all over the world, notwithstanding, very few attempts have been conducted to explore the effect of cracks on choride penetration. Cracks provoke to lose a main function of watertightness of concrete and lead to reduce the service life of concrete. For this reason, it is necessary to define a critical crack width to prevent a quick chloride penetration through crack. In this study, experiment is focused on establishing a critical crack width in terms of chloride penetration. Concrete specimens with different crack widths I crack lengths have been subjected to rapid chloride migration testing. In a side of analytical solution, a simple approach to quantify the chloride diffusion coefficient of only crack zone excluding sound concrete was proposed. The result clearly showed a critical crack width of 0.03 mm. Based on the experimental results, a phenomenological model was proposed to explain the meaning of critical crack width in practical engineering. In this model, cracked concrete zone was divided into three zones. These zones corresponded to a wide crack, a zone with micro-cracks and an uncracked zone.

  • PDF

테일러드 블랭크 레이저 용접 강판의 피로균열 전파 거동 (Fatigue Crack Propagation Behavior of Steel Plate of Laser Welded Tailored Blank)

  • 한문식;이양섭
    • 한국공작기계학회논문집
    • /
    • 제15권3호
    • /
    • pp.120-126
    • /
    • 2006
  • In this paper, we investigated the characteristics of fatigue fracture on TB(Tailored Blank) weldment by comparing the fatigue crack propagation characteristics of base metal with those of TB welded sheet used for vehicle body panels. We also investigated the influence of center crack on the fatigue characteristic of laser weld sheet of same thickness. We conducted an experiment on fatigue crack propagation on the base metal specimen of 1.2mm thickness of cold-rolled metal sheet(SPCSD) and 2.0mm thickness of hot-rolled metal sheet(SAPH440) and 1.2+2.0mm TB specimen. We also made an experiment on fatigue crack propagation on 2.0+2.0mm and 1.2+1.2mm thickness TB specimen which had center crack. The characteristics of fatigue crack growth on the base metal were different from those on 1.2+2.0mm thickness TB specimen. The fatigue crack growth rate of the TB welded specimens is slower in low stress intensity factor range$({\Delta}K)$ region and faster in high ${\Delta}K$ region than that of the base metal specimens.

선체 용접부의 균열진전 및 피로수명 예측에 관한 연구(I) (A Study of Crack Propagation and Fatigue Life Prediction on Welded Joints of Ship Structure(I))

  • 김경수;;서용석;장범선;김범일;권영빈
    • 대한조선학회논문집
    • /
    • 제45권6호
    • /
    • pp.669-678
    • /
    • 2008
  • The fatigue life of ship structure under cyclic loading condition is made up of initiation and propagation stages. In this study, crack growth test is carried out on large scale structure test specimens and fracture mechanical analysis is performed. The fatigue lives measured from fatigue tests are compared with DNV, Matsuoka and BS 5400 S-N curve. And to predict the crack initiation life, S-N curve, corresponding to crack length 20mm at welded joint, is developed based on hot spot stress range. Also crack propagation life is calculated using crack growth equation. Consequently, computed crack propagation life is compared with experiment results.

중탄소강(中炭素鋼)의 파속인성치(破續靭性値)에 관(關)한 실험적(實驗的) 연구(硏究) (An Experimental Study on the Fracture Toughness of Middle Carbon Steel)

  • 심관식
    • 산업기술연구
    • /
    • 제2권
    • /
    • pp.69-75
    • /
    • 1982
  • The fracture of a hot rolled SM 45C steel plate was investigated for various crack ratio, thickness and loading point using the method of J-integral. It was found that the stable crack growth increased as the thickness and crack ratio of the specimen. The results are summerized as follows. 1. The more crack ratio increase, the less fracture toughness tend to. 2. Considering fracture toughness, a thin specimen is stronger a thick one. 3. Considering only the bending of specimen without thickings of the axial direction, we can get $J_{1c}$ value decreased about 10 percentage within the scope of experimental crack ratio.

  • PDF

열간 단조 공정에서 금형 수명 향상을 위한 공정 설계 (Process Design for Improving Tool Life in Hot Forging Process)

  • 이현철;김병민;김광호
    • 소성∙가공
    • /
    • 제12권1호
    • /
    • pp.18-25
    • /
    • 2003
  • This paper explains the process design for improving tool life in the conventional hot forging process. The thermal load and the thermal softening are happened by contact between the hotter billet and the cooler tools in hot forging process. Tool life decreases considerably due to the softening of the surface layer of a tool was caused by a high thermal load and long contact time between the tools and the billet. Also, tool life is to a large extent limited by wear, heat crack and plastic deformation in hot forging process. Above all, the main factors which affect die accuracy and tool life we wear and the plastic deformation of a tool. The newly developed techniques for predicting tool life are applied to estimate the production quantity for a spindle component and these techniques can be applied to improve the tool life in hot forging process.

소성변형 밀 마멸에 대한 열간 단조 금형의 수명 평가 (Life Estimation of Hot Forging Die by Plastic Deformation and Wear)

  • 이현철;김병민;김광호
    • 한국정밀공학회지
    • /
    • 제20권2호
    • /
    • pp.66-75
    • /
    • 2003
  • This paper describes about the estimation method of die lift by wear and plastic deformation in hot forging process. The thermal load and the thermal softening are happened by the high temperature in hot forging process. Tool lift decreases considerably due to the softening of the surface layer of a tool caused by high thermal load and long contact time between tool and billet. Also, tool life is to a large extent limited by wear, heat crack and plastic deformation in hot forging process. Above all, the main factors which affects die accuracy and tool lift are wear and the plastic deformation of a die. The new developed technique for predicting tool life applied to estimate the production quantity for a spindle component and these techniques assist to improve the tool life in hot forging process.

Al합금 펄스 Nd:YAG 레이저 점 용접부의 균열 발생기구 (Mechanism of Crack Formation in Pulse Nd:YAG Laser Spot Welding of Al Alloys)

  • 하용수;조창현;강정윤;김종도;박화순
    • Journal of Welding and Joining
    • /
    • 제18권2호
    • /
    • pp.86-94
    • /
    • 2000
  • This study was performed to investigate types and formation mechanism of cracks in two Al alloy welds, A5083 and A7N01 spot-welded by pulse Nd : YAG laser, using SEM, EPMA and Micro-XRD. In the weld zone, three types of crack were observed : center line crack({TEX}$C_{C}${/TEX}), diagonal crack({TEX}$C_{D}${/TEX}), and U shape crack({TEX}$C_{U}${/TEX}). Also, HAZ crack({TEX}$C_{H}${/TEX}) was observed in the HAZ region, furthermore, mixing crack({TEX}$C_{M}${/TEX}) consisting of diagonal crack and HAZ crack was observed. White film was formed at th hot crack region in the fractured surface after it was immersed to 10% NaOH water. In the case of A5083 alloy, white films in {TEX}$C_{C}${/TEX} crack and {TEX}$C_{D}${/TEX} crack region were composed of low melting phases, {TEX}$Fe_{2}SiAl_{8}${/TEX} and eutectic phases, $Mg_2$Al$_3$ and $Mg_2$Si. Such films observed $CuAl_2$, {TEX}$Mg_{32}(Al,Zn)_{3}${/TEX}, MgZn$_2$, $Al_2$CuMg and $Mg_2$Si were observed in the whitely etched films near {TEX}$C_{C}${/TEX} crack and {TEX}$C_{D}${/TEX} crack regions. The formation of liquid films was due to the segregation of Mg, Si, Fe in the case of A5083 alloy and Zn, Mg, Cu, Sim in the case of A7N01 alloy, respectively. The {TEX}$C_{C}${/TEX} and {TEX}$C_{D}${/TEX} cracks were regarded as a result of the occurrence of tensile strain during the welding process. The formation of {TEX}$C_{M}${/TEX} crack is likely to be due to the presence of liquid film at the grain boundary near the fusion line in the base metal as well as in the weld fusion zone during solidification. The {TEX}$C_{U}${/TEX} crack is considered a result of the collapsed keyhole through incomplete closure during rapid solidification.

  • PDF

Ni기 초내열합금 용접부의 고온균열에 관한 연구(I) - 용접금속의 응고균열 감수성에 미치는 Fe의 영향 - (A Study on Hot Cracking in Ni-Base Superalloy Welds (I) - Effect of Fe Contents on Solidification Cracking Susceptibility in Weld Metal -)

  • 우인수;강정윤
    • Journal of Welding and Joining
    • /
    • 제19권6호
    • /
    • pp.614-621
    • /
    • 2001
  • A study was carried out to determine the solidification cracking susceptibility of Ni-base superalloy as a function of Fe content in base metal. Three kinds of Ni-base superalloys with three different levels of Fe content were used. The solidification cracking susceptibility was evaluated by the Trans-Varestraint test at four different strain levels. Quantitative analysis of crack revealed that the solidification crack length and the temperature range in which hot cracking occurred in fusion zone (Brittle Temperature Range, BTR) decreased with a decrease in Fe content. Further, the thermo-calc data indicated that the solidification temperature range also decreased with decreasing Fe content. From these results, it was deduced that the improvement of the solidification cracking susceptibility with decreasing Fe content was attributed to the decrease of the solidification temperature range.

  • PDF

스테인리스 304 슬라브의 HCR 조건시 열적/기계적 거동 (Thermo-Mechanical Behavior of Type 304 Stainless Slab in Hot Charge Rolling Condition)

  • C.G. Sun;S.M. Hwang
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.183-186
    • /
    • 2003
  • A finite element-based, integrated process model is presented for a three dimensional, coupled analysis of the thermal and mechanical behavior of type 304 stainless slab during hot charge rolling (HCR) and cold charge rolling (CCR) processes. The validity of the proposed model is examined through comparison with measurements. The susceptibility on micro-crack initiation or propagation due to the thermal stress in these two different process conditions was examined. The model's capability of revealing the effect of diverse process parameters is demonstrated through a series of process simulation.

  • PDF