• Title/Summary/Keyword: hot Stamping steel

Search Result 66, Processing Time 0.02 seconds

A Study on the Corrosion Resistance of Hot Stamped Automotive Parts (자동차 열간 프레스 가공 부품의 내식성에 관한 연구)

  • Yoo, Ji-Hong;Nam, Seung-Man
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.25-30
    • /
    • 2010
  • The authors have studied on the corrosion resistance of the hot stamped steel sheets for the application to automotive parts. Recently automotive companies have focused on the hot stamped parts to meet the light weighting needs and the safe reason. Because of the cost reduction of the hot stamped parts, automotive companies increase the usage of the coated steel sheets, especially Al-Si coated steel sheets. The coated layer of Al-Si coated steel sheets contains up to 50% of Fe, which was diffused from the steel sheet, after hot stamping. The hot stamped steel sheet was not phosphated due to the oxidation layer of the coating, however, the result of the water resistance test is similar to that of the conventional GA steel sheets. The pitting depth and the weight reduction of the coated layer of hot stamped steel sheets are less than those of GA steel.

The Study on Weldability of Boron Steel and Hot-Stamped Steel by Using Laser Heat Source (I) - Laser Weldability of Al-Si Coated Boron Steel Used for Hot Stamping Process - (레이저 열원을 이용한 보론강 및 핫스탬핑강의 용접특성에 관한 연구 (I) - 핫스탬핑 공정에 사용되는 Al-Si 코팅된 보론강의 레이저 용접특성 -)

  • Kim, Jong Do;Choi, So Young;Lee, Su Jin;Suh, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1367-1372
    • /
    • 2014
  • As the awareness of the environmental crisis has recently increased around the world, numerous studies in the transport industry have been conducted to solve this problem through lightweight car bodies. The hot-stamping process has been presented as solution to achieve a light weight. Hot-stamping is a method that is used to obtain ultra-high strength steel (1,500 MPa or greater) by simultaneously forming and cooling boron steel in a press die after heating it to a temperature of $900^{\circ}C$ or above. This study involved a, fundamental examination of laser parameters to investigate the laser weldability of boron steel. As a result, the following optimum parameters for the shielding gas were found: Q = 20 l/min, ${\alpha}=40^{\circ}$, d = 20mm, and l = 0 mm. The hardness of butt weldment increasesed sharply as a result of martensite formation at the fusion zone.

Construction of Vehicle Door Impact Beam Using Hot Stamping Technology (핫스탬핑에 의한 자동차 도어 임팩트빔의 개발)

  • Lee, Hyun-Woo;Hwang, Jung-Bok;Kim, Sun-Ung;Kim, Won-Hyuck;Yoo, Seung-Jo;Lim, Hyun-Woo;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.797-803
    • /
    • 2010
  • A vehicle door impact beam made of a thin sheet of steel has been constructed using hot stamping technology with the aim of ensuring occupant safety in the event of a side collision. This technology has been used to increase the strength of the vehicle body parts and to reduce the weight of the door impact beam as well as the number of work processes. Mechanical tests were performed to determine the material properties of the hot-stamped specimen and the results of the tests were used as input data in stamping and structural simulation in order to obtain the optimal design of door impact beam. The strength of the hot-stamped door impact beam increased to a value that was 102% higher than that of conventional pipe-shaped door impact beam. A weight reduction of 34% was also achieved.

A Study on Laser Weldability of Al-Si Coated 22MnB5 Steel for TWB Hot Stamping (Al-Si 도금된 22MnB5강의 핫스탬핑 TWB 적용을 위한 레이저용접성 고찰)

  • Kim, Yong;Park, Ki-Young;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.30-36
    • /
    • 2013
  • Recently the use of ultra high strength steels(UHSS) in structural and safety component is rapidly increasing in the automotive industry. Furthermore, it commonly use in tailor welded blank laser welding process before hot stamping to reduce lightweight vehicle. However TWB process is to be a problem about welded strength after hot stamping because it's welded before heat treatment. Therefore, in this study, laser welds of TWB after heat treatment were analyzed for changes in the characteristics, especially the impact on the oxidation and decarburization in order to prevent pre-coated Al-Si layer welds on the properties for intensive investigation. As a result, the degradation of the TWB weldments changes in the heat treatment conditions alone, without any pre-treatment of the coating layer has confirmed that there is a limitation on the improvement. Furthermore Al-Si elements are overall distributed on the weldment and it specially concentrated along the fusion line. Hardness value of Al-Si segregation area is less than 350Hv and tensile strength showed just 78~83% compared with substrate. Accordingly, we proved that both side Al-Si coating should be removed in order to ensure the strength of the substrate.

Formability Evaluation of Tailor Welded Blanks of Boron Steel Sheets by Erichsen Cupping Test at Elevated Temperature (보론강 용접 맞춤 판재의 고온 에릭슨 커핑 평가)

  • Kim, Y.I.;Kim, J.H.;Kim, Y.;Lee, M.Y.;Moon, Y.H.;Kim, D.
    • Transactions of Materials Processing
    • /
    • v.20 no.8
    • /
    • pp.568-574
    • /
    • 2011
  • The combination of tailor welded blank (TWB) and hot stamping often offers improved crash-worthiness and reduced mass of stamped parts in the automobile body. To investigate the formability of laser TWB and the reliability of weld line, the present study used 22MnB5 boron steel sheet of the same thickness and used the Erichsen cupping test at elevated temperatures. The effects of laser direction, die temperature, weld line positions and forming speed on formability(the limiting dome height) were studied and the results were compared with the formability of the base material.

A study on the characterization of shear surface according to shear rate and shear mechanism in high temperature shear process of boron steel (보론강 고온전단공정에서 전단속도 및 메커니즘에 따른 전단면 특성 파악에 관한 연구)

  • Jeon, Yong-Jun;Choi, Hyun-Seok;Lee, Hwan-Ju;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.37-41
    • /
    • 2017
  • With light vehicle weight gradually becoming ever more importance due to tightened exhaust gas regulations, hot-stamping processing using boron alloyed steel is being applied more and more by major automobile OEMs since process assures both moldability and a high strength of 1.5 GPa. Although laser trimming is generally applied to the post-processing of the hot-stamped process with high strength, there have been many studies of in-die hot trimming using shear dies during the quenching of material in order to shorten processing times. As such, this study investigated the effects of the Shear rate and Shear mechanism on shear processes during the quenching process of hot-stamping material. In case of pad variable, padding force is very weak compared with shear force, so it does not affect the shear surface. In case of shear rate, the higher the shear at high temperatures and the higher the friction effect. As a result the rollover and the fracture distribution decreased, and the burnish distribution increased. Therefore, it is considered that the shear quality is guaranteed when high shear rate is applied in high temperature shear process.

Change in Microstructure and Coating Layer of Al-Si Coated Steel after Conductive Heating (Al-Si 도금강의 통전 가열에 따른 미세조직과 도금층 변화)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.3
    • /
    • pp.107-115
    • /
    • 2021
  • Al-Si coated boron steel has been widely used as commercial hot stamping steel. When the steel is heated at 900~930℃ for 5 min in an electric furnace, thickness of the coating layer increases as a consequence of formation of intermetallic compounds and diffusion layer. The diffusion layer plays an important roll in blunting the propagation of crack from coating layer to base steel. Change in microstructure and coating layer of Al-Si coated boron steel after conductive heating with higher heating rate than electric furnace has been investigated in this study. Conductive-heated steel showed the martensitic structure with vickers hardness of 505~567. Both intermetallic compounds in coating layer and diffusion layer were not observed in conductive-heated steel due to rapid heating. It has been found that the conductive-heating consisting of rapid heating to 550℃ which is lower than melting point of Al-Si coating layer, slower heating to 900℃, and then 1 min holding at 900℃ is effective in forming intermetallic compound in coating layer and diffusion layer.

Characterization of Mechanical Properties of Boron Steel Sheet in Hot Bending Process with Various Parameters

  • Yang, Li;Kang, Chung-Gil
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.375-378
    • /
    • 2009
  • Hot press forming is a new forming process which also names as hot stamping. It can greatly enhance the formability of forming parts. This paper researches the formability of boron steel sheet in hot bending process which is a kind of hot press forming. In the text, the influence of hot press forming processing parameters, such as the heating temperature, blank holding force, punch speed and punch and die radius, on the mechanics properties and microstructure of the hot bending parts was analyzed by tension test and the metallographic observation on the parts with various processing parameters. The relationship between blank holding force and punch load was also presented.

  • PDF

Microstructure and Mechanical Properties of Hot-Stamped 3.2t Boron Steels according to Water Flow Rate in Direct Water Quenching Process (3.2t 보론강 판재 직수냉각 핫스탬핑시 냉각수 유량에 따른 미세조직 및 기계적 특성)

  • Park, Hyeon Tae;Kwon, Eui Pyo;Im, Ik Tae
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.693-700
    • /
    • 2020
  • Direct water quenching technique can be used in hot stamping process to obtain higher cooling rate compared to that of the normal die cooling method. In the direct water quenching process, setting proper water flow rate in consideration of material thickness and the size of the area directly cooled in the component is important to ensure uniform microstructure and mechanical properties. In this study, to derive proper water flow rate conditions that can achieve uniform microstructure and mechanical properties, microstructure and hardness distribution in various water flow rate conditions are measured for 3.2 mm thick boron steel sheet. Hardness distribution is uniform under the flow condition of 1.5 L/min or higher. However, due to the lower cooling rate in that area, the lower flow conditions result in a drastic decrease in hardness in some areas in the hot-stamped part, resulting in low martensite fraction. From these results, it is found that the selection of proper water flow rate is an important factor in hot stamping with direct water quenching process to ensure uniform mechanical properties.