The hypersensitive reaction (HR) is the most common plant defense reaction against pathogens. HR is produced during both host- and nonhost-incompatible interactions. Several reports suggest that similarities exist between host and nonhost resistances. We assayed the pattern of generation of reactive oxygen species (ROS) and scavenging enzyme activities during nonhost pathogen-plant interactions (Xanthomonas campestris pv. campestris/Capsicum annuum L.) and incompatible host pathogen-plant interactions (Xanthomonas campestris pv. vesicatoria race1/Capsicum annuum L.). Both ${O_2}^-\;and\;H_2O_2 $ accumulated much faster during nonhost resistance when compared to the host resistance. The scavenging enzyme activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX) were also different during the host- and nonhost-incompatible interactions. CAT activity was much higher during nonhost resistance, and several new isozymes of SOD and POX were detected during nonhost resistance when compared to the host resistance. Lipoxygenase (LOX) activity was higher in host resistance than nonhost resistance during the early stages of infection. Interestingly, the nitric oxide (NO) radical accumulated equal amounts during both host and nonhost resistance at early stages of infection. Further studies are needed to determine the specific pathways underlying these differences between host and nonhost resistance responses.
Host resistance is usually parasite-specific and is restricted to a particular pathogen races, and commonly is expressed against specific pathogen genotypes. In contrast, resistance shown by an entire plant species to a species of pathogen is known as non-host resistance. Therefore, non-host resistance is the more common and broad form of disease resistance exhibited by plants. As a first step to understand the mechanism of non-host plant defense, expressed sequence tags (EST) were generated from a hot pepper leaf cDNA library constructed from combined leaves collected at different time points after inoculation with non-host soybean pustule pathogen (Xanthomonas axonopodis pv. Glycines; Xag). To increase gene diversity, ESTs were also generated from cDNA libraries constructed from anthers and flower buds. Among a total of 10,061 ESTs, 8,525 were of sufficient quality to analyze further. Clustering analysis revealed that 55 % of all ESTs (4685) occurred only once. BLASTX analysis revealed that 74% of the ESTs had significant sequence similarity to known proteins present in the NCBI nr database. In addition, 1,265 ESTs were tentatively identified as being full-length cDNAs. Functional classification of the ESTs derived from pathogen-infected pepper leaves revealed that about 25% were disease- or defense-related genes. Furthermore, 323 (7%) ESTs were tentatively identified as being unique to hot pepper. This study represents the first analysis of sequence data from the hot pepper plant species. Although we focused on genes related to the plant defense response, our data will be useful for future comparative studies.
Many important horticultural and field crops are susceptible to virus infections or may possess a degree of resistance to some viruses, but become infected by others. Plant viruses enter cells through the presence of wounds, and replicate intracellularly small genomes that encode genes required for replication, cell-to-cell movement and encapsidation. There are numerous evidences from specific virus-host interactions to require the involvement of host factors and steps during viral replication cycle. However, viruses should deal with host defense responses either by general or specific mechanisms, targeting viral components or genome itself. On the other hand, the host plants have also adapted to defend themselves against viral attack by operating different lines of resistance responses. The defense-related interactions provide new insights into the complex molecular strategies for hosts for defense and counter-defense employed by viruses.
Proceedings of the Korean Society of Plant Pathology Conference
/
2004.10a
/
pp.65-67
/
2004
During initial interactions of bacteria with their host plants, most plants recognize the bacterial infections and repel the pathogen by plant defense mechanism. The most active plant defense mechanism is the hypersensitive response (HR) which is the localized induced cell death in the plant at the site of infection by a pathogen. A primary locus induced in gram-negative phytopathogenic bacteria during this initial interaction is the Hrp locus. The Hrp locus is composed of a cluster of genes that encodes the bacteral Type 111 machinery that is involved in the secretion and translocation of effector proteins to the plant cell. DNA sequence analysis of hrp gene in phytopathogenic bacteria has revealed a Hrp pathogenicity is]and (PAI) with a tripartite mosaic structure. For many gram-negative pathogenic bacteria, colonization of the host's tissue depends on the type III protein secretion system (TTSS) which secrets and translocates effector proteins into the host cell. Effectors can be divided into several groups including broad host range effectors, host specific effectors, disease specific effectors, and effectors inhibit host defenses. The role of effectors carrying LRR domain in plant resistance is very elusive since most known plant resistance gene carry LRR domain. Host specific effectors such as several avr gene products are involved in the determination of the host specificity. Almost all the phytopathogenic Xanthomonas spp. carry avrBs1, avrBs2, and avrBs3 homologs. Some strains of X. oryzae pv. oryzae carry more than 10 copies of avrBs3 homologs. However, the functions of all those avr genes in host specificity are not characterized well.;
Gentic diversity of 42 isolates of Phomopsis citri was analyzed with random amplified polymorphic DNA(RAPD) and fungicide resistance. RAPD profiles of genomic DNA of the isolates of P. citri and the degrees of their resistance to the fungicides mancozeb and propineb suggested the occurrence of genetic differentiation of P. citri distributed in Cheju. The isolates showed genetically diverse RAPD profiles according to the host species collected even from the same collection site and also according to the geographic origin collected even from the same host species. High levels of resistance to fungicides mancozeb and propineb were observed among the isolates of P. citri. However, there was no correlation between RAPD profiles of genomic DNA and levels of fungicide resistance of the isolates, suggesting that fungicide resistance of P. citri occurred irrespective of the host and geographic origin.
Plant viruses are among the important pathogens that cause severe crop losses. The most efficient method to control viral diseases is currently to use virus resistant crops. In order to develop the virus resistant crops, a detailed understanding of the molecular interactions between viral and host proteins is necessary. Recessive resistance to a pathogen can be conferred when plant genes essential in the life cycle of a pathogens are deficient, while dominant resistance is mediated by host resistance (R) genes specifically interacting with effector proteins of pathogens. Thus, recessive resistance usually works more stably and broadly than dominant resistance. While most of the recessive resistance genes have so far been identified by forward genetic approaches, recent advances in genome editing technologies including CRISPR/Cas9 have increased interest in using these technologies as reverse genetic tools to engineer plant genes to confer recessive resistance. This review summarizes currently identified recessive resistance genes and introduces reverse genetic approaches to identify host interacting partner proteins of viral proteins and to evaluate the identified genes as genetic resources of recessive resistance. We further discuss recent advances in various precise genome editing technologies and how to apply these technologies to engineer plant immunity.
The induced resistance of cucumber leaves treated with oligochitosan to the infection of the cucumber powdery mildew, Sphaerotheca fuliginea, was investigated using transmission electron microscopy. The results showed that when the plants were treated with oligochitosan and challenged with inoculum, a significant decrease of the disease occurred. The mycelial development in the treated leaves was markedly inhibited. The cytoplasm of the powdery mildew mycelium was aggregated, with its organelles disintegrated and the cytoplasm collapsed. The protoplasm in haustoria became electron-dense. Haustoria became malformed, their organelles disintegrated, the hausterial wall thickened and eventually the whole complex necrotized. The host cells produced defence structures and materials associated with infection and a hypersensitive response. The host cell wall was thickened and deeply stained; several layers of papilla structure were produced under the cell wall; dark materials were deposited between the cell wall and plasmalemma; extrahaustorial plasmalemma was deeply stained and extrahaustorial matrix appositions had large deposits of electron-dense material; the cytoplasm was disordered, host organelles disintegrated and eventually the whole host cell disintegrated and necrotized.
Insects are among the most important abiotic and biotic constraints to rice production. National rice research programs are in various stages in the development and implementation of integrated pest management (IPM) stratagies for rice insect control. Among the various control tactics, insect resistant cultivars are sought as the major tactic in rice IPM. Through the activities of interdisciplinary teams of scientists significant progress has been made in the development and release of insect resistant cultivars to farmers. Because of its compatibility with other control tactics insect resistance has proven to fit well into the IPM approach to rice insect control agents and minimize the need for insecticide applications. The development of biotypes which overcome the resistance in rice plants has been a significant constraint in the breeding of rice for resistance to insects. Most notable examples in Asia are the green leafhopper, Nephotettix virescens, brown planthopper, Nilaparvata lygens and the Asian rice gall midge, Orseolia oryzae. The current breeding stratege is to develop rice cultivars with durable resistance on which virulent biotypes cannot adapt. In spite of the significant progress made in the breeding of insect resistant cultivars there are still numerous important rice insect species for which host plant resistance as a control tactic has not been fully utilized. Advances in biotechnology provide promise of solving some of the problems that have limited the use of host plant resistance as a major tactic in the integrated management of rice insect pests.
To understand plant-pathogen interactions, a complete set of hot pepper genes differentially expressed against pathogen attack was isolated. As an initial step, hundreds of differentially expressed cDNAS were isolated from hot pepper leaves showing non-host resistance against bacterial plant pathogens (Xanthomonas campestris pv. glycines and Pseudomonas syringae pv. syringae) using differential display reverse transcription polymerase chain reaction (DDDRT-PCR) technique. Reverse Northern and Northern blot analyses revealed that 50% of those genes were differentially expressed in pepper loaves during non-host resistance response. Among them, independent genes without redundancy were micro-arrayed for further analysis. Random EST sequence database were also generated from various CDNA libraries including pepper tissue specific libraries and leaves showing non-host hypersensitive response against X. campestris pv. glycines. As a primary stage, thousands of cDNA clones were sequenced and EST data were analyzed. These clones are being spotted on glass slide to study the expression profiling. Results of this study may further broaden knowledge on plant-pathogen interactions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.