• Title/Summary/Keyword: host penetration

Search Result 58, Processing Time 0.022 seconds

Histological and Cytological Changes Associated with Susceptible and Resistant Responses of Chili Pepper Root and Stem to Phytophthora capsici Infection

  • Kim, Sang-Gyu;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.25 no.2
    • /
    • pp.113-120
    • /
    • 2009
  • Microscopic study of chili pepper (Capsicum annuum L.) infected with Phytophthora capsici, causing Phytophthora blight of chili pepper, was conducted to compare histological and cytological characteristics in the root and stem of susceptible (C. annuum cv. Bugang) and resistant (C. annuum cv. CM334) pepper cultivars. The susceptible pepper roots and stems were extensively penetrated and invaded by the pathogen initially into epidermal cells and later cortical and vascular cells. Host cell walls adjacent to and invaded by the infecting hyphae were partially dissolved and structurally loosened with fine fibrillar materials probably by cell wall-degrading enzymes of the pathogen. In the resistant pepper, the pathogen remained on root epidermal surface at one day after inoculation, embedded and captured in root exudation materials composed of proteins and polysaccharides. Also the pathogen appeared to be blocked in its progression at the early infection stages by thickened middle lamellae. At 3 days after inoculation, the oomycete hyphae were still confined to epidermal cells of the root and at most outer peripheral cortical cells of the stem, resulting from their invasion blocked by wound periderms formed underneath the infection sites and/or cell wall appositions bounding the hyphal protrusions. All of these aspects suggest that limitation of disease development in the resistant pepper may be due to the inhibition of the pathogen penetration, infection, invasion, and colonization by the defense structures such as root exudation materials, thickened middle lamellae, wound peridems and cell wall appositions.

A REVIEW OF THE MICROBIAL DIGESTION OF FEED PARTICLES IN THE RUMEN

  • McAllister, T.A.;Bae, H.D.;Yanke, L.J.;Cheng, K.J.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.3
    • /
    • pp.303-316
    • /
    • 1994
  • Microbial digestion of feed in the rumen involves a sequential attack culminating in the formation of fermentation products and microbial cells that can be utilized by the host animal. Most feeds are protected by a cuticular layer which is in effect a microbial barrier that must be penetrated or circumvented for digestion to proceed. Microorganisms gain access to digestible inner plant tissues through damage to the cuticle, or via natural cell openings (e.g., stomata) and commence digestion from within the feed particles. Primary colonizing bacteria adhere to specific substrates, divide to form sister cells and the resultant microcolonies release soluble substrates which attract additional microorganisms to the digestion site. These newly attracted microorganisms associate with primary colonizers to form complex multi-species consortia. Within the consortia, microorganisms combine their metabolic activities to produce the diversity of enzymes required to digest complex substrates (e.g., cellulose, starch, protein) which comprise plant tissues. Feed characteristics that inhibit the microbial processes of penetration, colonization and consortia formation can have a profound effect on the rate and extent of feed digestion in the rumen. Strategies such as feed processing or plant breeding which are aimed at manipulating feed digestion must be based on an understanding of these basic microbial processes and their concerted roles in feed digestion in the rumen.

Functional Analysis of MCNA, a Gene Encoding a Catalytic Subunit of Calcineurin, in the Rice Blast Fungus Magnaporthe oryzae

  • Choi, Jin-Hee;Kim, Yang-Seon;Lee, Yong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.1
    • /
    • pp.11-16
    • /
    • 2009
  • Magnaporthe oryzae, the causal agent of rice blast, forms a specialized infection structure, called an appressorium, which is crucial for penetration and infection of the host plant. Pharmacological data suggest that calcium/calmodulindependent signaling is involved in appressorium formation in this fungus. To understand the role of the calcium/calmodulin-activated protein phosphatase on appressorium formation at the molecular level, MCNA, a gene encoding the catalytic subunit of calcineurin, was functionally characterized in M. oryzae. Transformants expressing sense/antisense RNA of MCNA exhibited significant reductions in mycelial growth, conidiation, appressorium formation, and pathogenicity. cDNA of MCNA functionally complemented a calcineurin disruptant strain (cmp1::LEU2 cmp2::HIS3) of Saccharomyces cerevisiae. These data suggest that calcineurin A plays important roles in signal transduction pathways involved in the infection-related morphogenesis and pathogenicity of M. oryzae.

Histological and Ultrastructural Study of Susceptible and Age-related Resistance Responses of Pepper Leaves to Colletotrichum cocodes Infection

  • Hong, Jeum-Kyu;Lee, Yeon-Kyeong;Jeun, Yong-Chull;Hwang, Byung-Kook
    • The Plant Pathology Journal
    • /
    • v.17 no.3
    • /
    • pp.128-140
    • /
    • 2001
  • Infection of pepper leaves by Colletotrichum cocodes at the two- and eight-leaf stages caused susceptible and resistant lesions 96 h after inoculation, respectively. At the two-leaf stage, progressive symptom development occurred on the infected leaves. In contrast, localized necrotic spots were characteristic symptoms at the eight-leaf stage. Infected leaves at the two-leaf stage exhibited cell death accompanied by the accumulation of autofluorescent compounds. At the eight-leaf stage, pepper leaves infected by the anthracnose fungus displayed localized autofluorescence from the symptoms. Infection of pepper leaves by C. cocodes at the two-leaf stage resulted in its rapidand massive colonization of all the leaf tissues including the vascular tissue, together with cytoplasmic collapse, distortion of chloroplasts, and disruption of host cell walls. However, penetration of C. cocodes was very limited in the older leaf tissues of pepper plants at the eight-leaf stage. Fungal hyphae grew only in the intramural spaces of the epidermal cell walls at this stage. Occlusion of amorphous material in xylem vessels, aggregation of fibrillar material in inter-cellular spaces, and deposition of protein bodies were found as resistance responses to C. cocodes.

  • PDF

Two imported cases of cutaneous larva migrans

  • Park, Jin-Woo;Kwon, Sang-Jin;Ryu, Jae-Sook;Hong, Eun-Kyung;Lee, Jung-Uk;Yu, Hee-Joon;Ahn, Myoung-Hee;Min, Duk-Young
    • Parasites, Hosts and Diseases
    • /
    • v.39 no.1
    • /
    • pp.77-80
    • /
    • 2001
  • Cutaneous larva migrans (CLM) is a rare serpiginous cutaneous eruption caused by accidental penetration and migration in the skin with infective larvae of nematode that normally do not have the human as their host. Although CLM has a worldwide distribution, the infection is most frequent in warmer climates. More recently, they have been increasingly imported from the tropics or subtropics by travelers. We experienced two patients who had prutitic serpiginous linear eruption in their skin for a few weeks after traveling to the endemic areas (Brazil and Thailand, respectively) . After the treatment with albendazole, the skin lesions resolved with post-inflammatory hyperpigmentation. We report herein two cases of cutaneous larva migrans successfully treated with albendazole.

  • PDF

Ultrastructure of the Epiphytic Sooty Mold Capnodium on Walnut Leaves

  • Kim, Ki Woo
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.14-14
    • /
    • 2015
  • Cellular aspects of sooty mold on walnut leaves were investigated by using light and electron microscopy. A black coating developed on the adaxial leaf surface of a walnut tree. No infestations were found on the abaxial leaf surface with peltate glandular trichomes. Light microscopy showed that fungal complexes from the leaf surface were composed of brown conidia and hyphae. Conidia, with longitudinal and transverse septa, were variable in length ranging from 10 to $30{\mu}m$, and commonly found in clusters, forming microsclerotia. Neither epidermal penetration nor hyphal entrance to host tissues was observed. Based on their morphological characteristics, the fungal complexes were assumed to be Capnodium species. An electron-dense melanized layer was present on the cell wall of multi-celled conidia. Concentric bodies in the fungal cytoplasm had an electron-translucent core surrounded by an electron-dense margin with a fibrillar sheath. Chloroplasts without starch granules in the palisade mesophyll cells of sooty leaves had electron-dense stromata and swollen plastoglobuli. These results suggest that the epiphytic growth of fungal complexes can be attributed to the melanized layer and concentric bodies against a water-deficient environment on the leaf surface. Ultrastructural characteristics of the sooty leaves indicate typical features of dark-adapted and non-photosynthetic shade leaves.

  • PDF

Comprehensive Proteome Analysis of the Excretory/Secretory Proteins of Toxoplasma gondii

  • Lee, Won-Kyu;Ahn, Hye-Jin;Baek, Je-Hyun;Lee, Chong-Heon;Yu, Yeon Gyu;Nam, Ho-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.3071-3076
    • /
    • 2014
  • Proteomic analyses of the excretory/secretory proteins from the RH strain of Toxoplasma gondii have been performed to understand their functions in the host-parasite interaction. A total of 34 proteins were identified from LC/MS/MS analysis and their abundance was estimated by spectral counting methods. Among them, 8 species of micronemal proteins (MICs), 2 species of rhoptry proteins (ROPs), and 6 species of dense granular proteins (GRAs) were confirmed. Besides these, 18 species of protein were newly identified, and their cellular functions were estimated from sequence analysis. The three most abundant of the 34 identified extractor/secretory proteins-GRA1, GRA7 and GRA2-were confirmed to be highly expressed in T. gondii using the spectral count method. This phenomenon is another demonstration of the importance of GRA proteins for the penetration and survival of T. gondii.

Penetration of HEp-2 and Chinese Hamster Ovary Epithelial Cells by Escherichia coli Harbouring the Invasion-Conferring Genomic Region from Salmonella typhimurium

  • Park, Jeong-Uck;Hwang, Sang-Gu;Moon, Ja-Young;Cho, Yoon-Kweon;Kim, Dong-Wan;Jeong, Yong-Kee;Rhee, Kwang-Ho
    • Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.270-274
    • /
    • 2000
  • Pathogenic Salmonella typhimurium can invade the intestinal epithelium and cause a wide range of diseases including gastroenteritis and bacteremia in human and animals. To identify the genes involved in the infection, the invasion determinant was obtained from S. typhimurium 82/6915 and was subcloned into pGEM-7Z. A subclone DHl (pSV6235) invaded HEp-2 and Chinese hamster ovary epithelial cells and contained a 4.4 kb fragment of S. typhimurium genomic region. Compared with the host strain E. coli DHl, the subclone DHl (pSV6235) invaded cultured HEp-2 and Chinese hamster ovary cells at least 75- and 68-fold higher, respectively. The invasion rate of E. coli DHl for the cells significantly increased by harbouring the genomic region derived from pathogenic S. typhimurium 82/6915.

  • PDF

Complement-mediated tail degradation of Neodiplostomum seoulense cercariae

  • Park, Yun-Kyu;Hwang, Myung-Ki;Jung, Yun-Jung
    • Parasites, Hosts and Diseases
    • /
    • v.44 no.2 s.138
    • /
    • pp.127-131
    • /
    • 2006
  • The furcocercus cercariae of Neodiplostomum seoulense (Digenea: Neodiplostomidae) penetrate the skins of tadpoles and shed their tails. The speculated mechanism of this tail loss was physical efforts required to produce a vigorous zigzag motion during skin penetration; no other mechanism has been proposed. We examined the relationship between the host serum and cercarial tail loss. Cercariae of N. seoulense were collected from experimentally infected Segmentina hemisphaerula, and lots of 300 cercariae were cultured in medium 199 contained several types of sera. Cercarial tail degradation was induced in all media, but all the cercariae cultured except those cultured in media containing fetal bovine serum (FBS) died within 48 hr. After 72 hr cultivation in media containing FBS, cercarial tail degradation was induced in 67.0%; in continuous cultivation 13.3% of larvae survived for 7 days. Tail degradation did not occur in the absence of serum and when serum was heat inactivated at $56^{\circ}C$ for 30 min. The addition of 20 mM ethylenediaminetetraacetic acid (EDTA) blocked cercarial tail degradation completely. Moreover, the addition of 20 mM $MgCl_2$ restored tail degradation blocked by EDTA. These results suggest that the alternative complement pathway is related with the N. seoulense cercarial tail degradation induced by serum.

Differential expression of the 27 kDa cathepsin L-like cysteine protease in developmental stages of Spirometra erinacei

  • Kong, Yoon;Yun, Doo-Hee;Cho, Seung-Yull;Sohn, Woon-Mok;Chung, Young-Bae;Kang, Shin-Yong
    • Parasites, Hosts and Diseases
    • /
    • v.38 no.3
    • /
    • pp.195-199
    • /
    • 2000
  • The 27 kDa cathepsin L-like cysteine protease of Spirometra erinocei plerocercoid is known to play an important function in tissue penetration, nutrient uptake and immune modulation in human sparganosis. In the present study, the expression of this enzyme was examined at different developmental stages of S. erinacei including immature egg, coracidium, plerocercoid in tadpole and rat, and adult Proteolytic activity against carboxybenzoyl-phenylalanyl-arginyl-7-amino-4-rnethylcournarin was do tooted in the extracts of coracidia and plerocercoid while no activity was observed in those of immature egg and adult. The specific activity in coraridial extracts was lower than that in the plerocercoid. Reverse transcription-polymerase chain reaction and Northern biol analysis demonstrated that the gene was expressed in the coracidium and plerocercoid but not in immature egg and adult. These results suggest that the 27 kDa cysteine protease is only expressed in the stages involving active migration of the parasite in the host tissue.

  • PDF