• 제목/요약/키워드: host penetration

검색결과 58건 처리시간 0.023초

Phospholipase Activities in Clinical and Environmental Isolates of Acanthamoeba

  • Matin, Abdul;Jung, Suk-Yul
    • Parasites, Hosts and Diseases
    • /
    • 제49권1호
    • /
    • pp.1-8
    • /
    • 2011
  • The pathogenesis and pathophysiology of Acanthamoeba infections remain incompletely understood. Phospholipases are known to cleave phospholipids, suggesting their possible involvement in the host cell plasma membrane disruption leading to host cell penetration and lysis. The aims of the present study were to determine phospholipase activities in Acanthamoeba and to determine their roles in the pathogenesis of Acanthamoeba. Using an encephalitis isolate (T1 genotype), a keratitis isolate (T4 genotype), and an environmental isolate (T7 genotype), we demonstrated that Acanthamoeba exhibited phospholipase $A_2$ (PLA$_2$). and phospholipase D (PLD) activities in a spectrophotometry-based assay. Interestingly, the encephalitis isolates of Acanthamoeba exhibited higher phospholipase activities as compared with the keratitis isolates, but the environmental isolates exhibited the highest phospholipase activities. Moreover, Acanthamoeba isolates exhibited higher PLD activities compared with the PLA$_2$. Acanthamoeba exhibited optimal phospholipase activities at $37^{\circ}C$ and at neutral pH indicating their physiological relevance. The functional role of phospholipases was determined by in vitro assays using human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier. We observed that a PLD-specific inhibitor, i.e., compound 48/80, partially inhibited Acanthamoeba encephalitis isolate cytotoxicity of the host cells, while PLA$_2$-specific inhibitor, i.e., cytidine 5'-diphosphocholine, had no effect on parasite-mediated HBMEC cytotoxicity. Overall, the T7 exhibited higher phospholipase activities as compared to the T4. In contract, the T7 exhibited minimal binding to, or cytotoxicity of, HBMEC.

Complex Regulatory Network of MicroRNAs, Transcription Factors, Gene Alterations in Adrenocortical Cancer

  • Zhang, Bo;Xu, Zhi-Wen;Wang, Kun-Hao;Lu, Tian-Cheng;Du, Ye
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권4호
    • /
    • pp.2265-2268
    • /
    • 2013
  • Several lines of evidence indicate that cancer is a multistep process. To survey the mechanisms involving gene alteration and miRNAs in adrenocortical cancer, we focused on transcriptional factors as a point of penetration to build a regulatory network. We derived three level networks: differentially expressed; related; and global. A topology network ws then set up for development of adrenocortical cancer. In this network, we found that some pathways with differentially expressed elements (genetic and miRNA) showed some self-adaption relations, such as EGFR. The differentially expressed elements partially uncovered mechanistic changes for adrenocortical cancer which should guide medical researchers to further achieve pertinent research.

Mycoparasitism of Acremonium strictum BCP on Botrytis cinerea, the Gray Mold Pathogen

  • Choi, Gyung-Ja;Kim, Jin-Cheol;Jang, Kyoung-Soo;Cho, Kwang-Yun;Kim, Heung-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.167-170
    • /
    • 2008
  • A fungal strain BCP, which parasitizes Botrytis cinerea gray mold pathogen, was isolated and identified as Acremonium strictum. BCP strain overgrew the colonies of B. cinerea and caused severe lysis of the host hyphae. Frequent penetration and hyphal growth of A. strictum BCP inside the mycelia of B. cinerea were observed under light microscopy. In addition, some morphological abnormalities such as granulation and vacuolation of the cytoplasm were observed in mycelia and spores of B. cinerea. In dual culture test, A. strictum BCP strongly inhibited the mycelial growth of several plant pathogenic fungi as well as B. cinerea. To our knowledge, this is the first report on mycoparasitism of Acremonium species on B. cinerea.

Excretory bladder: the source of cysteine proteases in Paragonimus westermani metacercariae

  • Yang, Hyun-Jong;Chung, Young-Bae;Kang, Shin-Yong;Kong, Yoon;Cho, Seung-Yull
    • Parasites, Hosts and Diseases
    • /
    • 제40권2호
    • /
    • pp.89-92
    • /
    • 2002
  • The cysteine proteases of Paragonimus westermani metacercariae are involved in metacercarial excystment, host immune modulation, and possibly in tissue penetration. In order to clarify the origin of the enzymes, 28 and 27 kDa cysteine proteases in metacercarial excretory-secretory products were purified through the FPLC system using Mono Q column chromatography. The polyclonal antibodies to the enzymes were produced in BALB/c mice. Immunolocalization studies revealed that both cysteine proteases were distributed at the linings of excretory bladder and excretory concretions of the metacercariae. It was suggested that the excretory epithelium of P. westermani undertake the secretory function of metacercarial cysteine proteases, in addition to its role as a route for eliminating waste products.

Growth Responses of the Scallop Patinopecten yessoensis (Pelecypoda: Pectinidae) to Shell Bioerosion and Bottom Sediment Type

  • Silina, Alla V.
    • 한국패류학회지
    • /
    • 제23권1호
    • /
    • pp.9-16
    • /
    • 2007
  • Data obtained from field observation revealed that the degree of shell bioerosion of the scallop, Patinopecten (Mizuhopecten) yessoensis, by endolithic organisms significantly higher on the muddy sand than on the sand. At the area studied, the polychaete worm, Polydora brevipalpa (=Polydora ciliata brevipalpa, Polydora ciliata Okuda, Not Johnston, Polydora variegata), which is common symbiotic species for the scallop made 95-100% of total scallop shell bioerosion at the area studied. The muddy bottom sediments enriched by organic matter create favourable conditions for development of microphytobenthos and bacteria, which are predominantly consumed by P. brevipalpa. Linear regressions for the degree of shell bioerosion on the scallop shell height, total wet weight and adductor muscle wet weight revealed negative relationships between them for the scallops inhabiting both sand and muddy sand. The influence of polychaetes on scallops is complex. They may be food competitors. Polychaete can directly affect the host through their boreholes. Scallop expends energy for shell regeneration to prevent the polychaete penetration into its interior cavity. It was found that the degree of shell bioerosion increased considerably with scallop age.

  • PDF

A Histone Deacetylase, MoHDA1 Regulates Asexual Development and Virulence in the Rice Blast Fungus

  • Kim, Taehyun;Lee, Song Hee;Oh, Young Taek;Jeon, Junhyun
    • The Plant Pathology Journal
    • /
    • 제36권4호
    • /
    • pp.314-322
    • /
    • 2020
  • Interplay between histone acetylation and deacetylation is one of the key components in epigenetic regulation of transcription. Here we report the requirement of MoHDA1-mediated histone deacetylation during asexual development and pathogenesis for the rice blast fungus, Magnaporthe oryzae. Structural similarity and phylogenetic analysis suggested that MoHDA1 is an ortholog of Saccharomyces cerevisiae Hda1, which is a representative member of class II histone deacetylases. Targeted deletion of MoHDA1 caused a little decrease in radial growth and large reduction in asexual sporulation. Comparison of acetylation levels for H3K9 and H3K14 showed that lack of MoHDA1 gene led to significant increase in H3K9 and H3K14 acetylation level, compared to the wild-type and complementation strain, confirming that it is a bona fide histone deacetylase. Expression analysis on some of the key genes involved in asexual reproduction under sporulation-promoting condition showed almost no differences among strains, except for MoCON6 gene, which was up-regulated more than 6-fold in the mutant than wild-type. Although the deletion mutant displayed little defects in germination and subsequent appressorium formation, the mutant was compromised in its ability to cause disease. Wound-inoculation showed that the mutant is impaired in invasive growth as well. We found that the mutant was defective in appressorium-mediated penetration of host, but did not lose the ability to grow on the media containing H2O2. Taken together, our data suggest that MoHDA1-dependent histone deacetylation is important for efficient asexual development and infection of host plants in M. oryzae.

Effect of Triiodobenzoic Acid on Broomrape (Orobanche ramosa) Infection and Development in Tomato Plants

  • Harb, Amal M.;Hameed, Khalid M.;Shibli, Rida A.
    • The Plant Pathology Journal
    • /
    • 제20권2호
    • /
    • pp.81-84
    • /
    • 2004
  • Branched broomrape (Orobanche ramosa) is a holo-parasitic flowering plant that attaches to the root of its host, green plant, by means of a specialized structure known as haustorium. Following successful contact and penetration on susceptible plant root, complex tissue of Orobanche cells is formed which is known as the tubercle. Newly formed tubercles contain high activity ofindole-3-acetic acid (IAA). Triiodobenzoic acid (TIBA), as an inhibitor of IAA polar transport, was utilized to investigate the supply and requirement of auxin to the developing O. ramosa on tomato plant. There was no significant reduction in the incidence of O. ramosa per pot of different TIBA treatments. However, infection severity in terms of the number of O. ramosa shoots that emerged per plant and number of attachments per plant root system were significantly reduced by 60 % and 45 % on TIBA treated plants, respectively. Histo-logical studies revealed conspicuous delay in the initiation of xylem vessel differentiation inside tubercles of the TIBA treated tomato plants. Also, differentiated vessels showed thinner secondary wall deposition, and improper alignment within bundles inside those tubercles. They were wider and shorter in diameter in comparison to those of untreated plants. These findings were attri-buted to the short supply of IAA required for normal development, and to the xylem vessel differentiation of O. ramosa tubercles on infected tomato. Hence, this parasitic flowering plant seems to depend upon its host in its requirements for IAA, in a source to sink relation-ship.

Antimicrobial Active Substances from Entomopathogenic Fungi (Various Applications of Entomopathogenic Fungi)

  • Shin, Tae Young;Woo, Soo Dong;Kim, Jeong Jun
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2016년도 춘계학술대회 및 임시총회
    • /
    • pp.13-13
    • /
    • 2016
  • Insects constitute the largest and most diverse group of animals in the world. They also serve as the hosts or nutrient sources for an immense assemblage of pathogens, parasites, and predators. More than 700 fungal species from 100 genera have adopted an entomopathogenic lifestyle. Although entomopathogenic fungi were studied as only biocontrol agents against a variety of pests in various countries, it has been recently focused their additional roles in nature. They are antagonists to/against plant pathogens, endophytes, and possibly even plant growth promoting agents. The potential antimicrobial effect against fungal plant pathogens by an isolate of entomopathogenic fungi including Beauveria bassiana, Lecanicillium spp., and Isaria fumosorosea have been reported since late 1990s, but wasn't reported pathogenicity of the isolate against pests. Later, a Canadian Lecanicillium sp. isolate and L. longisporium isolated from Vertalec$^{(R)}$ showed simultaneous control effect against both aphid and cucumber powder mildew. Therefore, the antimicrobial activities of 342 fungi isolates collected from various regions and conditions in Korea were evaluated against plant pathogenic fungus Botrytis cinerea using dual culture technique on agar plate. As a result, 186 isolates (54.4%) shown the antifungal activity against B. cinerea. The culture filtrates of selected fungi completely suppressed the growth of the microorganisms, indicating that suppression was due to the presence of antimicrobial substances in the culture filtrate. Mode of action of these fungi against insect involves the attachment of conidia to the insect cuticle, followed by germination, cuticle penetration, and internal dissemination throughout the insect. During infection process, secreted enzymes, proteinous toxins, and/or secondary metabolites secreted by entomopathogenic fungi can be used to overcome the host immune system, modify host behavior, and defend host resources. Recently, secondary metabolites isolated from entomopathogenic fungi have been reported as potential bioactive substances. Generally, most of bioactive substances produced by entomopathogenic fungi have reported low molecular weight (lower than 1,000 g/mol) as peptide and, in contrast the high molecular weight fungal bioactive substances are rare. Most substances based on entomopathogenic fungi were shown antimicrobial activity with narrow control ranges. In our study we analyzed the antimicrobial substances having antagonistic effects to B. cinerea. Antimicrobial substances in our fungal culture filtrates showed high thermostability, high stability to proteolytic enzymes, and hydrophilicity and their molecular weights were differed from substance. In conclusion, entomopathogenic fungi showed pathogenicity against insect pests and culture filtrate of the fungi also shown to antimicrobial activity. In the future, we can use the entomopathogenic fungi and its secondary metabolites to control both insect pest control and plant pathogenic fungi simultaneously.

  • PDF

The Endless Challenges of KIA Motors for Globalization : A Case Study on Kia in Saudi Arabia

  • Park, Young-Eun
    • 산경연구논집
    • /
    • 제9권9호
    • /
    • pp.45-52
    • /
    • 2018
  • Purpose - This case study is dedicated to the study of the presence of KIA Motors in the Kingdom of Saudi Arabia (KSA) and its market and entry strategies for strategic globalization that allowed the company to establish itself within a conservative and clustered marketplace dominated by American and Japanese international brands. Research Design, data, and methodology - The main information for the case was gathered through an interview and questionnaire from the executives of the KIA Al Jabr, which got the exclusive dealership in Saudi Arabia. Moreover, secondary data were obtained from reliable and authoritative sources such as the Saudi government agency publications, newspapers, international business journals. Other related periodicals based on the results from previous and current studies on similar topics were critically reviewed as well. Results - The findings of this paper show the different business environments of the Saudi market and the importance of various points regarding the company's global entry strategy even if the host market culture is quite different in many ways from other international markets. Conclusions - This case can provide Korean companies interested in the Middle East with insight into market penetration and global strategy, and present various perspectives and implications for global market access as well.

Proteomics in Insecticide Toxicology

  • Park, Byeoung-Soo;Lee, Sung-Eun
    • Molecular & Cellular Toxicology
    • /
    • 제3권1호
    • /
    • pp.11-18
    • /
    • 2007
  • Mechanisms of insecticide resistance found in insects may include three general categories. Modified behavioral mechanisms can let the insects avoid the exposure to toxic compounds. The second category is physiological mechanisms such as altered penetration, rapid excretion, lower rate transportation, or increased storage of insecticides by insects. The third category relies on biochemical mechanisms including the insensitivity of target sites to insecticides and enhanced detoxification rate by several detoxifying mechanisms. Insecticides metabolism usually results in the formation of more water-soluble and therefore more readily eliminated, and generally less toxic products to the host insects rather than the parent compounds. The representative detoxifying enzymes are general esterases and monooxygenases that catalyze the toxic compounds to be more water-soluble forms and then secondary metabolism is followed by conjugation reactions including those catalyzed by glutathione S-transferases (GSTs). However, a change in the resistant species is not easily determined and the levels of mRNAs do not necessarily predict the levels of the corresponding proteins in a cell. As genomics understands the expression of most of the genes in an organism after being stressed by toxic compounds, proteomics can determine the global protein changes in a cell. In this present review, it is suggested that the environmental proteomic application may be a good approach to understand the biochemical mechanisms of insecticide resistance in insects and to predict metabolomic changes leading to physiological changes of the resistant species.