• 제목/요약/키워드: host material

Search Result 352, Processing Time 0.039 seconds

A Spirobenzofluorene Type Phosphine Oxide Molecule as A Triplet Host and An Electron Transport Material for High Efficiency in Phosphorescent Organic Light-Emitting Diodes

  • Jang, Sang-Eok;Jeon, Soon-Ok;Yook, Kyoung-Soo;Joo, Chul-Woong;Son, Hyo-Suk;Lee, Jun-Yeob
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.767-770
    • /
    • 2009
  • We synthesized a spirobenzofluorene type phosphine oxide (SPPO2) as a new triplet host and an universal electron transport material for phosphorescent organic light-emitting diodes(PHOLEDs). Red PHOLEDs with the SPPO2 host material showed a high quantum efficiency of 14.3 % with a current efficiency of 20.4 cd/A. In addition, the SPPO2 could be applied as an electron transport material which can be matched with any host material due to the lowest unoccupied molecular orbital of 2.4 eV. Electron injection from a cathode to the SPPO2 electron transport layer was better than common electron transport materials. In particular, the SPPO2 was effective as the electron transport material in blue PHOLEDs and the quantum efficiency was more than doubled and driving voltage was lowered by more than 3 V using the SPPO2 instead of common electron transport material.

  • PDF

New polymeric host material for efficient organic electro phosphorescent devices

  • Jung, Choong-Hwa;Park, Moo-Jin;Eom, Jae-Hoon;Shim, Hong-Ku;Lee, Seong-Taek;Yang, Nam-Choul;Liand, Duan;Suh, Min-Chul;Chin, Byung-Doo;Hwang, Do-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.843-845
    • /
    • 2009
  • A polymeric host for triplet emitters composed of N-alkylcarbazole and tetramethylbenzene units was successfully synthesized. Efficient energy transfer was observed between this polymeric host and green phosphorescent dyes. The device fabricated using 5 wt% green 1 in the polymeric host as the emitting layer showed the best performance. Thin films of this host-guest system, exhibiting clear stripe patterns could be prepared through the LITI process. The patterned films were then used to fabricate electrophosphorescent devices, which show performance characteristics similar to those of spin-coated devices. The new host material is a good candidate to be used in polymer-based full-color electrophosphorescent light-emitting displays.

  • PDF

A Study on the improvement in efficiencies of Organic-Light Emitting Devices Using the Phosphor, Ir(PPy)$_3$ (인광물질 인 Ir(PPy)$_3$를 이용한 유기전기발광소자의 효율 개선에 관한 연구)

  • 김준호;김윤명;구자룡;이한성;하윤경
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.178-181
    • /
    • 2001
  • The organic light-emitting devices (OLEDs) based on fluorescence have low efficiencies due to the requirement of spin-symmetry conservation. By using the phosphorescent material, the internal quantum efficiency can reach 100 %, compared to 25 % in the case of the fluorescent material. Thus, the phosphorescent OLEDs have recently been extensively studied and showed higher internal quantum efficiencies then the conventional OLEDs. In this study, we investigated the characteristics of the phosphorescent OLEDs, with the green emitting phosphor, Ir(ppy)$_3$ (tris(2-phenylpyridine)iridium). The devices with a structure of ITO/TPD/Ir(PPy)$_3$ doped in the host material/BCP/Alq$_3$/Li:Al/Al were fabricated, and its electrical and optical characteristics were studied. By changing the doping concentration of Ir(PPy)$_3$ and the host materials, we fabricated several devices and investigated the device characteristics.

  • PDF

Synthesis and Characterization of New Anthracene-Based Blue Host Material

  • So, Ki-Ho;Park, Hyun-Tae;Shin, Sung-Chul;Lee, Sang-Gyeong;Lee, Dong-Hui;Lee, Kyeong-Hoon;Oh, Hyeong-Yun;Kwon, Soon-Ki;Kim, Yun-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1611-1615
    • /
    • 2009
  • We designed new anthracene-based host material to increase color purity as well as device efficiency. The new blue host, 9,10-bis(2,4-dimethylphenyl)anthracene (BDA), has highly twisted structure and wide band gap due to ortho interaction between anthracene and introduced 2,4-dimethylphenyl substituents. BDA exhibited deep blue fluorescence in solution (${\lambda}_{max}$ = 410 nm) and in solid state (${\lambda}_{max}$ = 429 nm), respectively, with the wide optical band gap (E = 3.12 eV). Blue-light-emitting OLEDs using obtained host and 2% Flu-DPAN as emitter showed 8 cd/A of high efficiency as well as high color purity [CIE coordinates = (0.15, 015)].

Electroluminescence Properties of New Spiro(fluorene-benzofluore)-Type Blue Host Materials (새로운 Spiro[fluorene-benzofluore]계 청색 호스트 물질의 유기전계발광 특성)

  • Jeon, Young-Min;Lee, Hyun-Seok;Lee, Chil-Won;Kim, Jun-Woo;Chang, Gi-Geun;Gong, Myoung-Seon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.29-30
    • /
    • 2008
  • New spiro-type host materials, 5'-phenylnaphthyl-spiro[fluorene-7,9'-benzofluorene](BH-lPN) and 5',6-bis(phenylnaphthyl)-spiro[fluorene-7,9'-benzofluorene](BH-6PN) were designed and successfully prepared by the Suzki reaction. The EL characteristics of BH-1PN as blue host material doped with blue dopant materials, BD-1 were evaluated and compared with the existing host MADN:dopant BD-1 system. The structure of the device is ITO/DNTPD/NPB/Host:5% dopant/Alq3/Al-LiF. The device obtained from BH-lPN doped with BD-1 showed a good color purity and efficiency, on the other hand luminance and current-density characteristics are worse than that of MADN doped with BD-1.

  • PDF

High efficiency deep blue phosphorescent organic light emitting diodes using a phenylcarbazole type phosphine oxide as a host material

  • Jeon, Soon-Ok;Yook, Kyoung-Soo;Lee, Jun-Yeob
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.188-191
    • /
    • 2009
  • A high efficiency deep blue phosphorescent organic light-emitting diode (PHOLED) was developed using a new wide triplet bandgap host material (PPO1) with a phenylcarbazole and a phosphine oxide unit. The wide triplet bandgap host material was synthesized by a phosphornation reaction of 2-bromo-Nphenylcarbazole with chlorodiphenylphosphine. A deep blue emitting phosphorescent dopant, tris((3,5-difluoro-4-cyanophenyl)pyridine)iridium (FCNIr), was doped into the PPO1 host and a high quantum efficiency of 17.1 % and a current efficiency of 19.5 cd/A with a color coordinate of (0.14,0.15) were achieved in the blue PHOLED. The quantum efficiency of the deep blue PHOLED was better than any other quantum efficiency value reported up to now.

  • PDF

Influence of green phosphorescent organic light-emitting devices of host by hole transport layer

  • Yoon, Do-Yeol;Lee, Chan-Jae;Moon, Dae-Gyu;Lee, Jeong-No
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.814-816
    • /
    • 2009
  • We have investigated the effect of host on the device charactistics of green phosphorescent organic light emitting devices consising of mCP, CBP and TPBi. Electrons were confined within the device by inserting hole transport layer between the electro transport and the emitting layer. When the appropriate interlayers were added, the device with TPBI host layer performances were found to be dramatically enhanced, with current efficiency and lifetime of 18cd/A and 18hour.

  • PDF

Highly efficient deep-blue electroluminescence using doped PCVtPh with a new host material

  • Park, Jeong-Keun;Lee, Kum-Hee;Kim, Seul-Ong;Park, Jung-Sun;Seo, Ji-Hoon;Kim, Young-Kwan;Yoon, Seung-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.775-778
    • /
    • 2009
  • Novel blue host material, 4,4'-(dinaphthalen-2-yl)-1,1'-binaphthyl (DNBN), was designed and synthesized for OLEDs. In order to test the electroluminescent properties of DNBN, DNBN was used as the host materials for a blue emitter, PCVtPh. The device exhibited deep-blue emission with the CIEx,y coordinates (x=0.15, y=0.08) at 8.0 V, a luminous efficiency of 1.66 cd/A, a power efficiency of 0.77 lm/W and an external quantum efficiency of 2.30 % at 20 mA/$cm^2$, respectively.

  • PDF

Novel Bipolar Host Materials for Phosphorescent OLEDs

  • Yu, Eun-Sun;Kim, Nam-Soo;Kim, Young-Hoon;Chae, Mi-Young;Chang, Tu-Won
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.636-639
    • /
    • 2007
  • We have developed novel bipolar host materials, designed to have both electron transporting and hole transporting abilities, which show significant increase in luminance efficiency and decrease in driving voltage of green phosphorescent OLEDs. In case of the best host material, CheilGH-3, the driving voltage was decreased 27 % at a given constant luminance of $1000cd/m^2$. Also the luminance efficiency was enhanced 44 % and the power efficiency was almost doubled compared to the reference device using CBP as a host.

  • PDF

Fabrication and Characterization of Blue OLED using TMP-BiP Host and DJNBD-1 Dopant (TMP-BiP 호스트와 DJNBD-1 도펀트를 이용한 청색 OLED의 제작과 특성평가)

  • Chang, Ji-Geun;Ahn, Jong-Myoung;Shin, Sang-Baie;Chang, Ho-Jung;Gong, Su-Choel;Shin, Hyun-Kwan;Gong, Myung-Sun;Lee, Chil-Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.2 s.19
    • /
    • pp.19-23
    • /
    • 2007
  • The blue emitting OLEDs using TMP-BiP[(4'-Benzoylferphenyl-4-yl)phenyl-methanone-Diethyl(biphenyl-4-ymethyl) phosphonate] host and DJNBD-1 dopant have been fabricated and characterized. In the device fabrication, 2-TNATA [4,4',4"-tris(2-naphthylphenyl-phenylamino)-triphenylamine] as a hole injection material and NPB [N,N'-bis(1-naphthyl)N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] as a hole transport material were deposited on the ITO(indium tin oxide)/glass substrate by vacuum thermal evaporation method. Followed by the deposition, blue color emission layer was deposited using TMP-BiP as a host material and DJNBD-1 as a dopant. Finally, small molecule OLEDs with structure of $ITO/2-TNATA/NPB/TMP-BiP:DJNBD-l/Alq_3/LiF/Al$ were obtained by in-situ deposition of $Alq_3$, LiF and Al as the electron transport material, electron injection material and cathode, respectively. The effect of dopant into host material of the blue OLEDs was studied. The blue OLEDs with DJNBD-1 dopant showed that the maximum current and luminance were found to be about 34 mA and $8110\;cd/m^2$ at 11 V, respectively. In addition, the color coordinate was x=0.17, y=0.17 in CIE color chart, and the peak emission wavelength was 440 nm. The maximum current efficiency of 2.15 cd/A at 7 V was obtained in this experiment.

  • PDF