• 제목/요약/키워드: host cells

검색결과 1,063건 처리시간 0.025초

Transcriptional Responses of Human Respiratory Epithelial Cells to Nontypeable Haemophilus influenzae Infection Analyzed by High Density cDNA Microarrays

  • Lee, Ji-Yeon;Lee, Na-Gyong
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권4호
    • /
    • pp.836-843
    • /
    • 2004
  • Nontypeable H. influenzae (NTHi), a Gram-negative obligate human pathogen, causes pneumonia, chronic bronchitis, and otitis media, and the respiratory epithelium is the first line of defense that copes with the pathogen. In an effort to identify transcriptional responses of human respiratory epithelial cells to infection with NTHi, we examined its differential gene expression using high density cDNA microarrays. BEAS-2B human bronchial epithelial cells were exposed to NTHi for 3 hand 24 h, and the alteration of mRNA expression was analyzed using microarrays consisting of 8,170 human cDNA clones. The results indicated that approximately 2.6% of the genes present on the microarrays increased in expression over 2-fold and 3.8% of the genes decreased during the 24-h infection period. Upregulated genes included cytokines (granulocyte-macrophage colony stimulating factor 2, granulocyte chemotactic protein 2, IL-6, IL-10, IL-8), transcription factors (Kruppel-like factor 7, CCAAT/enhancer binding protein $\beta$, E2F-1, NF-$\kappa$B, cell surface molecules (CD74, ICAM-1, ICAM-2, HLA class I), as well as those involved in signal transduction and cellular transport. Selected genes were further confirmed by reverse-transcription-PCR. These data expand our knowledge of host cellular responses during NTHi infection and should provide a molecular basis for the study of host-NTHi interaction.

Protective Effects of a Novel Probiotic Strain of Lactobacillus plantarum JSA22 from Traditional Fermented Soybean Food Against Infection by Salmonella enterica Serovar Typhimurium

  • Eom, Jeong Seon;Song, Jin;Choi, Hye Sun
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권4호
    • /
    • pp.479-491
    • /
    • 2015
  • Lactobacillus species have been shown to enhance intestinal epithelial barrier function, modulate host immune responses, and suppress the growth of pathogenic bacteria, yeasts, molds, and viruses. Thus, lactobacilli have been used as probiotics for treating various diseases, including intestinal disorders, and as biological preservatives in the food and agricultural industries. However, the molecular mechanisms used by lactobacilli to suppress pathogenic bacterial infections have been poorly characterized. We previously isolated Lactobacillus plantarum JSA22 from buckwheat sokseongjang, a traditional Korean fermented soybean food, which possessed high enzymatic, fibrinolytic, and broad-spectrum antimicrobial activity against foodborne pathogens. In this study, we investigated the effects of L. plantarum JSA22 on the growth of S. Typhimurium and S. Typhimurium-induced cytotoxicity by stimulating the host immune response in intestinal epithelial cells. The results showed that coincubation of S. Typhimurium and L. plantarum JSA22 with intestinal epithelial cells suppressed S. Typhimurium infection, S. Typhimurium-induced NF-κB activation, and IL-8 production, and lowered the phosphorylation of both Akt and p38. These data indicated that L. plantarum JSA22 has probiotic properties, and can inhibit S. Typhimurium infection of intestinal epithelial cells. Our findings can be used to develop therapeutic and prophylactic agents against pathogenic bacteria.

Characterization of Prototype Foamy Virus Infectivity in Transportin 3 Knockdown Human 293t Cell Line

  • Hamid, Faysal Bin;Kim, Jinsun;Shin, Cha-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권2호
    • /
    • pp.380-387
    • /
    • 2017
  • The foamy viruses are currently considered essential for development as vectors for gene delivery. Previous studies demonstrated that prototype foamy virus (PFV) can infect and replicate prevalently in a variety of cell types for its exclusive replication strategy. However, the virus-host interaction, especially PFV-transportin3 (TNPO3), is still poorly understood. In our investigation of the role of TNPO3 in PFV infection, we found lower virus production in TNPO3 knockdown (KD) cells compared with wild-type 293T cells. PCR analysis revealed that viral DNAs were mostly altered to circular forms: both 1-long terminal repeat (1-LTR) and 2-LTR in TNPO3 KD cells. We therefore suggest that TNPO3 is required for successful PFV replication, at least at/after the nuclear entry step of viral DNA. These findings highlight the obscure mysteries of PFV-host interaction and the requirement of TNPO3 for productive infection of PFV in 293T cells.

Toll-Like Receptor-Mediated Free Radical Generation in Clonorchis sinensis Excretory-Secretory Product-Treated Cholangiocarcinoma Cells

  • Bahk, Young Yil;Pak, Jhang Ho
    • Parasites, Hosts and Diseases
    • /
    • 제54권5호
    • /
    • pp.679-684
    • /
    • 2016
  • Clonorchiasis, caused by direct contact with Clonorchis sinensis worms and their excretory-secretory products (ESPs), is associated with chronic inflammation, malignant changes in bile ducts, and even cholangiocarcinogenesis. Our previous report revealed that intracellular free radicals enzymatically generated by C. sinensis ESPs cause NF-${\kappa}B$-mediated inflammation in human cholangiocarcinoma cells (HuCCT1). Therefore, the present study was conducted to examine the role of upstream Toll-like receptors (TLRs) on the initial host innate immune responses to infection. We found that treatment of HuCCT1 cells with native ESPs induced changes in TLR mRNA levels in a time-dependent manner, concomitant with the generation of free radicals. ESP-mediated free radical generation was markedly attenuated by preincubation of the cells with TLR1-4-neutralizing antibodies, indicating that at least TLR1 through 4 participate in stimulation of the host innate immune responses. These findings indicate that free radicals triggered by ESPs are critically involved in TLR signal transduction. Continuous signaling by this pathway may function in initiating C. sinensis infection-associated inflammation cascades, a detrimental event leading to progression to more severe hepatobiliary diseases.

Lactobacillus brevis KB290 Enhances IL-8 Secretion by Vibrio parahaemolyticus-Infected Caco-2 Cells

  • Yakabe, Takafumi;Shimohata, Takaaki;Takahashi, Akira
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권1호
    • /
    • pp.118-124
    • /
    • 2013
  • Vibrio parahaemolyticus in uncooked seafood causes acute gastroenteritis. The microorganism has two sets of type III secretion systems and two hemolysins. When it injects its effector proteins into a host cell via type III secretion system 1, one of the type III secretion systems induces secretion of interleukin (IL)-8, a proinflammatory chemokine, through the phosphorylation of ERK 1/2 and p38 MAPK. Although probiotics have beneficial effects on hosts and can help control some infectious diseases, there is little research on the efficacy of probiotics in V. parahaemolyticus infection. Here we pretreated V. parahaemolyticus-infected human intestinal epithelial cells with heat-killed Lactobacillus brevis KB290, a probiotic isolated from fermented vegetables (traditional Japanese pickles) and utilized as an ingredient of beverages and supplementary foods, and demonstrated its efficacy in enhancing IL-8 secretion from V. parahaemolyticus-infected cells. Among the three heat-killed lactic acid bacterial strains we tested, L. brevis KB290 induced the highest level of IL-8 secretions in the infected cells. Relative to control cells (Caco-2 cells pretreated with PBS), V. parahaemolyticus-infected Caco-2 cells pretreated with heat-killed L. brevis KB290 secreted IL-8 earlier, although concentrations were similar 450min after infection. Heat-killed L. brevis KB290 pretreatment also induced earlier ERK 1/2 phosphorylation, greater p38 MAPK phosphorylation, and enhanced IL-8 mRNA expression. Heat-killed L. brevis KB290 accelerated IL-8 secretion, a host cell immune response, in V. parahaemolyticus-infected cells. We consider this to be beneficial because IL-8 plays an important defensive role against infection, and would contribute to the repair of injured epithelial cells.

Th17 responses and host defense against microorganisms: an overview

  • Van De Veerdonk, Frank L.;Gresnigt, Mark S.;Kullberg, Bart Jan;Van Der Meer, Jos W.M.;Joosten, Leo A.B.;Netea, Mihai G.
    • BMB Reports
    • /
    • 제42권12호
    • /
    • pp.776-787
    • /
    • 2009
  • T helper (Th) 17 cells have recently been described as a third subset of T helper cells, and have provided new insights into the mechanisms that are important in the development of autoimmune diseases and the immune responses that are essential for effective antimicrobial host defense. Both protective and harmful effects of Th17 responses during infection have been described. In general, Th17 responses are critical for mucosal and epithelial host defense against extracellular bacteria and fungi. However, recent studies have reported that Th17 responses can also contribute to viral persistence and chronic inflammation associated with parasitic infection. It has become evident that the type of microorganisms and the setting in which they trigger the Th17 response determines the outcome of the delicate balancethat exists between Th17 induced protection and immunopathogenesis.

이동 무선망을 위한 효율적인 무단절 통신 기법의 설계 및 평가 (Design and Evaluation of an Efficient Seamless Communication Technique for Mobile Wireless Networks)

  • 배인한;김윤정
    • 한국멀티미디어학회논문지
    • /
    • 제3권3호
    • /
    • pp.280-289
    • /
    • 2000
  • 본 논문에서는 이동 무선망에서 무단절 통신을 제공하는 효율적 인 방법을 제안한다. 무단절 통신의 목표는 이동 사용자에게 단절 자유서비스를 제공하는데 있다. 서비스의 단절은 활동적인 랜드오프에 의해 발생된다. 이동 무선망에는 단절 자유 서비스에 대한 완전 보장을 요구하지 않으나 아주 빈번한 단절을 허용치 않는 많은 사용자 응용들이 있다. 본 논문에서는 단절 자유 서비스에 대한 확률적 보장을 제공하는 확장된 지연 멀티캐스트를 제안한다. 제안하는 멀티캐스트에서는 이동 호스트의 속도와 방향을 예측하고, 그러한 정보를 기초로 모든 이웃 셀이 아닌 그 이동 호스트가 핸드오프 할 가능성이 있는 일부 이웃 셀에게만 지연 멀티캐스트가 가능하다. 따라서 확장된 지연 멀티캐스트 방법은 정적 네트워크 대역폭 사용을 상당히 감소시키고 또한 단절 자유 서비스에 대한 확률적 보장을 제공한다.

  • PDF

Naegleria fowleri Induces Jurkat T Cell Death via O-deGlcNAcylation

  • Lee, Young Ah;Kim, Kyeong Ah;Shin, Myeong Heon
    • Parasites, Hosts and Diseases
    • /
    • 제59권5호
    • /
    • pp.501-505
    • /
    • 2021
  • The pathogenic free-living amoeba Naegleria fowleri causes primary amoebic meningoencephalitis, a fatal infection, by penetrating the nasal mucosa and migrating to the brain via the olfactory nerves. N. fowleri can induce host cell death via lytic necrosis. Similar to phosphorylation, O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation) is involved in various cell-signaling processes, including apoptosis and proliferation, with O-GlcNAc addition and removal regulated by O-GlcNAc transferase and O-GlcNAcase (OGA), respectively. However, the detailed mechanism of host cell death induced by N. fowleri is unknown. In this study, we investigated whether N. fowleri can induce the modulation of O-GlcNAcylated proteins during cell death in Jurkat T cells. Co-incubation with live N. fowleri trophozoites increased DNA fragmentation. In addition, incubation with N. fowleri induced a dramatic reduction in O-GlcNAcylated protein levels in 30 min. Moreover, pretreatment of Jurkat T cells with the OGA inhibitor PUGNAc prevented N. fowleri-induced O-deGlcNAcylation and DNA fragmentation. These results suggest that O-deGlcNAcylation is an important signaling process that occurs during Jurkat T cell death induced by N. fowleri.

5G 스몰셀 기술 및 활용 기술 동향 (Trends in 5G Small Cell and Application Technology)

  • 권동승;나지현
    • 전자통신동향분석
    • /
    • 제37권2호
    • /
    • pp.83-95
    • /
    • 2022
  • 5G goes beyond people to serve indoor and outdoor companies and industries, as well as campuses such as halls, industrial complexes, educational institutions, stadiums, dense urban areas, rural areas, and government institutions. Therefore, a new approach to small cells is needed. Accordingly, 3GPP and Small Cell Forum are researching 5G small cell architecture; 3GPP, Small Cell Forum, and 5G Alliance for Connected Industries and Automation are also researching private networks tailored to meet the specific requirements of various companies and local governments. In particular, in the UK, a small cell-based technology is required for realizing the Joint Operator Technical Specifications-Neutral Host In-Building specification to cost-effectively secure indoor coverage. Further, the research on the SON(Self-Organizing Network) technology for small cells in 5G, where commercialization has begun, is required. The 5G-based small cell structure, private network, and Neutral Host In-Building and SON reviewed in this study are at the initial research stages; therefore, additional research is needed to secure the competitiveness of the small cell technology in 5G and Beyond 5G.

IL-17A Secreted by Th17 Cells Is Essential for the Host against Streptococcus agalactiae Infections

  • Chen, Jing;Yang, Siyu;Li, Wanyu;Yu, Wei;Fan, Zhaowei;Wang, Mengyao;Feng, Zhenyue;Tong, Chunyu;Song, Baifen;Ma, Jinzhu;Cui, Yudong
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권5호
    • /
    • pp.667-675
    • /
    • 2021
  • Streptococcus agalactiae is an important bacterial pathogen and causative agent of diseases including neonatal sepsis and meningitis, as well as infections in healthy adults and pregnant women. Although antibiotic treatments effectively relieve symptoms, the emergence and transmission of multidrug-resistant strains indicate the need for an effective immunotherapy. Effector T helper (Th) 17 cells are a relatively newly discovered subpopulation of helper CD4+ T lymphocytes, and which, by expressing interleukin (IL)-17A, play crucial roles in host defenses against a variety of pathogens, including bacteria and viruses. However, whether S. agalactiae infection can induce the differentiation of CD4+ T cells into Th17 cells, and whether IL-17A can play an effective role against S. agalactiae infections, are still unclear. In this study, we analyzed the responses of CD4+ T cells and their defensive effects after S. agalactiae infection. The results showed that S. agalactiae infection induces not only the formation of Th1 cells expressing interferon (IFN)-γ, but also the differentiation of mouse splenic CD4+ T cells into Th17 cells, which highly express IL-17A. In addition, the bacterial load of S. agalactiae was significantly increased and decreased in organs as determined by antibody neutralization and IL-17A addition experiments, respectively. The results confirmed that IL-17A is required by the host to defend against S. agalactiae and that it plays an important role in effectively eliminating S. agalactiae. Our findings therefore prompt us to adopt effective methods to regulate the expression of IL-17A as a potent strategy for the prevention and treatment of S. agalactiae infection.