• Title/Summary/Keyword: horseshoe vortex

Search Result 53, Processing Time 0.02 seconds

A study on fluid flow and heat transfer around the circular cylinder located on a flat plate in crossflow (횡단류 내 평판 위에 놓인 원형 실린더 주위의 유동장 및 열전달에 관한 연구)

  • Lee, Gi-Baek;Son, Jeong-Ho;Yang, Jang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1458-1471
    • /
    • 1996
  • The present study is concerned with the heat transfer enhancement associated with a symmetrical or asymmetrical horseshoe vortex in front of and around the circular cylinder centered between the side walls of a wind tunnel. The static pressure measurements and the flow visualization in front of and around cylinders have been performed to determine the existence of horseshoe vortex. The hue-capturing method using the thermochromatic liquid crystals with great spatial resolution was used to obtain the local information of the endwall heat transfer coefficients. In case of one cylinder, the convective heat transfer coefficients of the region where the horseshoe vortex exists are larger than those of any other region. In case of two cylinders with tandem arrangement, the heat transfer rate of gap spacing (d/D= 1.5) is higher than that of gap spacings (d/D=2.0 or 2.5).

Skin-Friction Drag Reduction in Wake Region by Suction Control on Horseshoe Vortex in front of Hemisphere (반구 전방에 생성된 말굽와류 흡입제어에 의한 후류영역 마찰저항 감소에 관한 연구)

  • Koo, Bonguk;Kang, Yong-Duck
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.795-801
    • /
    • 2019
  • The aim of this study was to investigate the possibility of the skin-friction reduction by vortex control. A vortical system such as a horseshoe vortex, a hairpin vortex, and a wake region was induced around a hemisphere attached on a Perspex flat plate in the circulating water channel. Hairpin vortices were developed from the wake region and horseshoe vortices were formed by an adverse pressure gradient in front of the hemisphere. The horseshoe vortices located on the flank of the hemisphere induced a high momentum flow in the wake region by the direction of their vorticity. This process increased the frequency of the hairpin vortices as well as the frictional drag on the surface of the wake region. To reduce the skin-friction drag, suction control in front of the hemisphere was applied through a hole. Flow visualization was performed to optimize the free-stream velocity, size of the hemisphere, and size of the suction hole. Once the wall suction control mitigated the strength of the horseshoe vortex, the energy supplied to the wake region was reduced, causing the frequency of the hairpin vortex generation to decrease by 36.4 %. In addition, the change in the skin-friction drag, which was measured with a dynamometer connected to a plate in the wake region, also decreased by 2.3 %.

Controlling Horseshoe Vortex by the Leading-Edge Chamfer Groove in a Generic Wing-Body Junction (일반적인 블레이드 형상에서의 앞전 모서리 홈에 의한 말굽와류 제어)

  • Cho, Jong-Jae;Choe, Byeong-Ik;Kim, Jae-Min;Kim, Kui-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.185-191
    • /
    • 2008
  • The aerodynamic losses so attributed to the endwall - usually termed secondary flow losses or secondary losses - can be as high as 30$\sim$50% of the total aerodynamic losses in a blade or stator row. Inlet guide vanes, with lower total turning and higher convergence ratios, will have smaller secondary losses, amounting to as much as 20% of total loss for an inlet stator row. These are important part for improving a turbine efficiency. The present study deals with a leading edge chamfer groove on a wing-body to investigate the vortex generation and characteristics of a horseshoe vortex with the installed height, and depth of the groove. The current study is investigated with $FLUENT^{TM}$.

  • PDF

Numerical Study of Laminar Flow over a Protruding Surface (I) - Flow Analysis - (돌출된 표면 위의 충류유동에 대한 전산 해석적 연구 (I) -유동 해석-)

  • Hwang, Jong-Yeon;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1418-1425
    • /
    • 1999
  • Flow over a protruding surface is investigated using numerical simulation. We consider flow between two parallel plates with a cube mounted on one side of the channel. As the flow approaches the cube, the adverse pressure gradient produces three-dimensional boundary-layer separation, resulting In the formation of horseshoe vortices. The objective of our study is to clarify both the steady and the unsteady characteristics of the vortex system. As the Reynolds number increases, the structure of the vortices near the cube becomes complex and the number of vortices increases. The distribution of skin friction on the cube-mounted wall reflects the effect of the horseshoe vortices. All these results are consistent with the experimental findings currently available.

The Flow Field Structures of In-lined Double Jet-in-Cross Flow at Low Velocity Ratio (낮은 속도비에서의 직렬 이중 제트-교차흐름의 유동 구조)

  • Lee, Ki-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.415-422
    • /
    • 2015
  • The flow field structures of dual jet-in-cross-flow were examined experimentally for in-lined perforated damage holes configuration using particle image velocimetry. Ensemble averaged in-plane velocity and vorticity data in the jet were determined to study the mean jet structure. Jets are formed by pressure differences between upper and lower airfoil surface. The flow structure of vicinity of the thru holes consist of a vortical structure that wrap around the jets like a horseshoe and develop further downstream through a pair of stream-wise vortices. The shape, size and location of the horseshoe vortex were found to be dependent on the angle of attack. In spite of the existence of battle damage holes, the effect on the control force was insignificant when the damage size was not large enough.

Improvement of the flow around airfoil/flat-plate junctures by optimization of the leading-edge fence (날개-평판 접합부에서의 날개 앞전 판 최적화를 통한 유동특성 향상)

  • Cho, Jong-Jae;Kim, Kui-Soon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.829-836
    • /
    • 2009
  • 3-Dimensional flow which is represented by horseshoe vortex is generated as a type of secondary flow about the main flow. As well, it causes the flow loss. The present study deals with the leading edge fence shape on a wing-body junction to decrease a horseshoe vortex, one of the main factors to generate the secondary flow losses. The shape of leading-edge fence was optimized with the design variables of the installed height, length, width, and thickness of the fence as the design variables. Approximate optimization design method is used as the optimization. The study was investigated using $FLUENT^{TM}$ and $iSIGHT^{TM}$. Total pressure coefficient of the optimized design case was decreased about 7.5 % compare to the baseline case.

Numerical and wind tunnel simulation of pollutant dispersion in the near wake of buildings

  • Wang, X.;McNamara, K.F.
    • Wind and Structures
    • /
    • v.8 no.6
    • /
    • pp.427-442
    • /
    • 2005
  • Numerical and wind tunnel simulations of pollutant dispersion around rectangular obstacles with five aspect ratios have been conducted in order to identify the effects of flow patterns induced by buildings on plume dispersion in the near wake of buildings. An emission from a low source located upwind of obstacles was used in this simulation. The local flow patterns and concentrations around a cubical obstacle were initially investigated using three RANS turbulence models, (the standard $k-{\varepsilon}$, Shear Stress Transport (SST), Reynolds-Stress RSM turbulence model) and also using Large-eddy simulation (LES). The computed concentrations were compared with those measured in the wind tunnel. Among the three turbulence models, the SST model offered the best performance and thus was used in further investigations. The results show, for normal aspect ratios of width to height, that concentrations in the near wake are appreciably affected because of plume capture by the horseshoe vortex and convection by the vertical vortex pairs. These effects are less important for high aspect ratios. Vertical vortex pairs present a strong ability to exchange mass vertically and acts efficiently to reduce ground-level concentrations in the near wake.

Research on the Design Methods of Appendages to Reduce Vortex Flows Around Underwater Vehicles (수중운동체 주위 와류유동 저감을 위한 부가물 형상 설계기법 연구)

  • Sang-Jae Yeo;Suk-Yoon Hong;Jee-Hun Song
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.2
    • /
    • pp.252-261
    • /
    • 2024
  • This research establishes design standards for vortex reduction devices (VRDs) aimed at minimizing underwater radiated noise by mitigating horseshoe vortex (HSV) and root vortex (RV) generated at the junction of appendages and the hull of underwater vehicles. Initial analysis replaced the influence of appendage dimensions and flow velocity with the Reynolds number by verifying the Reynolds similarity of vortex flows. The three-dimensional surfaces of VRDs were parameterized using Bezier curves. Optimal length-to-height ratios were identified by evaluating the vortex reduction performances of VRDs with various dimensions. Ultimately, non-dimensional design standards were derived for VRDs, ensuring effective vortex reduction across any appendage, thereby enhancing stealth performance.

Aerodynamic Performance Prediction of Horizontal Axis Wind Turbine by Vortex Lattice Method (와류 격자법에 의한 수평축 풍력터빈의 공기역학적 성능예측)

  • 유능수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1264-1271
    • /
    • 1990
  • The vortex lattice method was adopted to predict the aerodynamic performance of a horizontal axis wind turbine. For this simulation. the rotor blade was divided into many panels both in chordwise and spanwise direction and then replaced by horseshoe vortices. The wake was divided into two parts of near wake and far wake : the near wake was assumed as helical vortex line elements and the far wake was modeled by semi-infinite circular vortex cylinder. The induced velocity components were calculated by the Biot-Savart law. By this way the power coefficient was obtained and represented as a function of the tip speed ratio. The numerical results obtained were compared with those of the other methods and experimental results and showed good agreement with experimental results.

Improvement of the Flow Around Airfoil/Flat-Plate Junctures by Optimization of the Leading-Edge Shape (날개-평판 접합부에서의 날개 앞전 형상 최적화를 통한 유동특성 향상)

  • Cho, Jong-Jae;Kim, Kui-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.257-265
    • /
    • 2009
  • The present study deals with the leading edge shape on a wing-body junction to decrease a horseshoe vortex, one of the main factors to generate the secondary flow losses. The shape of leading-edge is optimized with design variables form the leading-edge shape. Approximate optimization design method is used for the optimization. The study is investigated using $FLUENT^{TM}$ and $iSIGHT^{TM}$. As the result, total pressure coefficient of the optimized design case was decreased about 9.79% compare to the baseline case.

  • PDF