• Title/Summary/Keyword: horse breeds

Search Result 34, Processing Time 0.024 seconds

The relationship between the variants in the 5'-untranslated regions of equine chorionic gonadotropin genes and serum equine chorionic gonadotropin levels

  • Liu, ShuQin;Lian, Song;Yang, YunZhou;Fu, ChunZheng;Ma, HongYing;Xiong, ZhiYao;Ling, Yao;Zhao, ChunJiang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.12
    • /
    • pp.1679-1683
    • /
    • 2017
  • Objective: An experiment was conducted to study the association between the single nucleotide polymorphisms (SNPs) in 5'-untranslated regions (5'-UTR) of equine chorionic gonadotropin (eCG) genes and the serum eCG levels. Methods: SNPs in 5'-UTR of eCG genes were screened across 10 horse breeds, including 7 Chinese indigenous breeds and 3 imported breeds using iPLEX chemistry, and the association between the serum eCG levels of 174 pregnant Da'an mares and their serum eCG levels (determined with ELISA) was analyzed. Results: Four SNPs were identified in the 5'-UTR of the $eCG{\alpha}$ gene, and one of them was unique in the indigenous breeds. There were 2 SNPs detected at the 5' end of the $eCG{\beta}$ subunit gene, and one of them was only found in the Chinese breeds. The SNP g.39948246T>C at the 5'-UTR of $eCG{\alpha}$ was associated significantly with eCG levels of 75-day pregnant mare serum (p<0.05) in Da'an mares. Prediction analysis on binding sites of transcription factors showed that the g.39948246T>C mutation causes appearance of the specific binding site of hepatocyte nuclear factor 3 forkhead homolog 2 (HFH-2), which is a transcriptional repressor belonging to the forkhead protein family of transcription factors. Conclusion: The SNP g.39948246T>C at the 5'-UTR of $eCG{\alpha}$ is associated with eCG levels of 75-day pregnant mare serum (p<0.05).

Genetic Relationship and Characteristics Using Microsatellite DNA Loci in Horse Breeds. (Microsatellite DNA를 이용한 말 집단의 유전적 특성 및 유연 관계)

  • Cho, Gil-Jae
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.699-705
    • /
    • 2007
  • The present study was conducted to investigate the genetic characteristic and to establish the parentage verification system of the Korean native horse(KNH). A total number of 192 horses from six horse breeds including the KNH were genotyped using 17 microsatellite loci. This method consisted of multiplexing PCR procedure. The number of alleles per locus varied from 5 to 10 with a mean value of 7.35 in KNH. The expected heterozygosity and observed heterozygosity were ranged from 0.387 to 0.841(mean 0.702) and from 0.429 to 0.905(mean 0.703), respectively. The total exclusion probability of 17 microsatellite loci was 0.9999. Of the 17 markers, AHT4, AHT5, CA425, HMS2, HMS3, HTG10, LEX3 and VHL20 marker have relatively high PIC value(>0.7). This study found that there were specific alleles, P allele at AHT5, Q allele and R allele at ASB23, H allele at CA425, S allele at HMS3, J allele at HTG10 and J allele at LEX3 marker in KNH when compared with other horse populations. Also, the results showed two distinct clusters: the Korean native horse cluster(Korean native horse, Mongolian horse), and the European cluster(Jeju racing horse, Thoroughbred horse). These results present basic information for detecting the genetic markers of the KNH, and has high potential for parentage verification and individual identification of the KNH.

Characterization of Dopamine Receptor D4 Gene Polymorphisms in Horses (말에서 Dopamine Receptor D4 유전자의 변이 특성 분석)

  • Choi, Jae-Young;Choi, Yeonju;Lee, Jongan;Shin, Sang-Min;Yoon, Minjung;Kang, Yong-Jun;Shin, Moon-Cheol;Yoo, Ji-Hyun;Kim, Hyeonah;Cho, In-Cheol;Yang, Byoung-Chul;Kim, Nam-Young
    • Journal of Life Science
    • /
    • v.32 no.1
    • /
    • pp.29-35
    • /
    • 2022
  • This study was conducted to analyze the genetic polymorphisms of dopamine receptor D4 (DRD4) in horse breeds and its association with substrate characteristics in Jeju crossbreds (Jeju Horse × Thoroughbred). Polymorphisms in DRD4 are candidate genes associated with temperament in various mammals, including humans. Single nucleotide polymorphism (SNP) G292A in the exon 3 region of the horse DRD4 has a reported association with curiosity and vigilance in thoroughbreds. Sanger sequencing was used to identify polymorphisms of the mutations in DRD4 in three horse breeds. The SNP frequency in Jeju horses was significantly different from the frequency in other breeds. Character evaluation, conducted in the Jeju crossbreds and scored using a temperament test and contact test, revealed a high correlation between each test. Comparison of the polymorphism in the DRD4 of horses and the results of the character evaluation revealed lower scores for all temperaments in horses carrying allele A. Comparison of the SNP of G292A and blood dopamine levels in Jeju crossbreds showed 2.87 times higher levels for the GA type than for the GG type. This study identified an association between DRD4 polymorphism and various test methods for evaluating horse temperament and levels of neurotransmitters. Further research could validate the use of this gene as a genetic marker for character evaluation.

Evolutionary Analyses of Hanwoo (Korean Cattle)-Specific Single-Nucleotide Polymorphisms and Genes Using Whole-Genome Resequencing Data of a Hanwoo Population

  • Lee, Daehwan;Cho, Minah;Hong, Woon-young;Lim, Dajeong;Kim, Hyung-Chul;Cho, Yong-Min;Jeong, Jin-Young;Choi, Bong-Hwan;Ko, Younhee;Kim, Jaebum
    • Molecules and Cells
    • /
    • v.39 no.9
    • /
    • pp.692-698
    • /
    • 2016
  • Advances in next generation sequencing (NGS) technologies have enabled population-level studies for many animals to unravel the relationships between genotypic differences and traits of specific populations. The objective of this study was to perform evolutionary analysis of single nucleotide polymorphisms (SNP) in genes of Korean native cattle Hanwoo in comparison to SNP data from four other cattle breeds (Jersey, Simmental, Angus, and Holstein) and four related species (pig, horse, human, and mouse) obtained from public databases through NGS-based resequencing. We analyzed population structures and differentiation levels for the five cattle breeds and estimated species-specific SNPs with their origins and phylogenetic relationships among species. In addition, we identified Hanwoo-specific genes and proteins, and determined distinct changes in protein-protein interactions among five species (cattle, pig, horse, human, mouse) in the STRING network database by additionally considering indirect protein interactions. We found that the Hanwoo population was clearly different from the other four cattle populations. There were Hanwoo-specific genes related to its meat trait. Protein interaction rewiring analysis also confirmed that there were Hanwoo-specific protein-protein interactions that might have contributed to its unique meat quality.

Individual Identification and Breed Allocation with Microsatellite Markers: An Evaluation in Indian Horses

  • Behl, Rahul;Behl, Jyotsna;Gupta, Neelam;Gupta, S.C.;Ahlawat, S.P.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.1
    • /
    • pp.25-30
    • /
    • 2007
  • The capability of microsatellite markers for individual identification and their potential for breed assignment of individuals was evaluated in two Indian horse breeds. The strength of these individual assignment methods was also evaluated by increasing the number of loci in increments of five. The probability of identity of two random horses from the two breeds at all twenty five studied loci was as low as $1.08{\times}10^{-32}$ showing their suitability to distinguish between individual horses and their products. In the phylogenetic approach for individual assignment using Nei's genetic distances, 10.81% of horses associated with breed other than the major cluster of the source breed horses when all twenty five microsatellite loci were implemented. Similar results were obtained when the maximum likelihood approach for individual assignment was used. Based on these results it is proposed that, although microsatellite markers may prove very useful for individual identification, their utility for breed assignment of horses needs further evaluation.

A comparative analysis of the related body compositions by riding-horse breed in Korea (국내 승용마의 체형상관에 따른 품종별 비교 분석)

  • Oh, Woon-Yong;Do, Kyoung-Tag;Cho, Byung-Wook;Park, Kyung-Do;Kim, Sung-Hoon;Lee, Hak-Kyo;Shin, Young-Soo;Cho, Young-Seuk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.3
    • /
    • pp.515-521
    • /
    • 2011
  • There are increasing demands for the producing and breeding new domestic riding horses for the vitalizations of horse riding industry in Korea, according as 'Horse Industry Support Act' became. In this study, we were to develop the functional relation through the conformation comparison & body composition analysis. 76 heads of 5 breeds utilized for riding horses in Korea were used and their body measurements on 12 items were measured and cluster analysis was conducted to determine the correlation relation among them. The measurements were standardized that (height, croup height, pelvis length), and (hip width, width of pelvis) were highly correlated. In these results of the decision tree, we confirmed to classify the breed type determination by their body measurements (hip height, hip width, head length, croup height). This result can be used as basic data for the development of horse type determination (racing, riding, Riding for the Disabled, Working, or fattening) through the analysis of body composition, and be utilized as the basic data for the producing and breeding new domestic riding horses through the 3D Stereosocpic image system analyze.

Assessment of genetic diversity using microsatellite markers to compare donkeys (Equus asinus) with horses (Equus caballus)

  • Kim, Su Min;Yun, Sung Wook;Cho, Gil Jae
    • Animal Bioscience
    • /
    • v.34 no.9
    • /
    • pp.1460-1465
    • /
    • 2021
  • Objective: The study aimed to evaluate the diversity of donkey populations by comparing with the diversity of Thoroughbred and Jeju Halla horses; identified breeding backgrounds can contribute to management and conservation of donkeys in South Korea. Methods: A total of 100 horse (50 Thoroughbreds and 50 Jeju Halla horses) and 79 donkeys samples were genotyped with 15 microsatellite markers (AHT4, AHT5, ASB2, ASB17, ASB23, CA425, HMS1, HMS2, HMS3, HMS6, HMS7, HTG4, HTG10, LEX3, and VHL20), to identify genetic diversity and relationships among horses and donkeys. Results: The observed number of alleles per locus ranged from 1 (ASB17, HMS1) to 14 (AHT5), with a mean value of 4.87, 8.00, and 5.87 in Thoroughbreds, Jeju Halla horses, and donkeys, respectively. Of the 15 markers, AHT4, AHT5, ASB23, CA425, HMS2, HMS3, HTG4, HTG10, and LEX3 loci had relatively high polymorphism information content (PIC) values (PIC>0.5) in these three populations. Mean levels of genetic variation were HE = 0.6721 and HO = 0.6600 in Thoroughbreds, HE = 0.7898 and HO = 0.7100 in Jeju Halla horses, and HE = 0.5635 and HO = 0.4861 in donkeys. Of the 15 loci in donkeys, three loci had negative inbreeding coefficients (FIS), with a moderate mean FIS (0.138). The FIS estimate for the HTG4 marker was highest (0.531) and HMS6 marker was lowest (-0.001). The total probability of exclusion value of 15 microsatellite loci was 0.9996 in donkeys. Conclusion: Genetic cluster analysis showed that the genetic relationship among 79 donkeys was generally consistent with pedigree records. Among the three breeds, donkeys and Thoroughbred horses formed clearly different groups, but the group of Jeju Halla horses overlapped with that of Thoroughbred horses, suggesting that the loci would be suitable for donkey parentage testing. Therefore, the results of this study are a valid tool for genetic study and conservation of donkeys.

Comparison for immunophysiological responses of Jeju and Thoroughbred horses after exercise

  • Khummuang, Saichit;Lee, Hyo Gun;Joo, Sang Seok;Park, Jeong-Woong;Choi, Jae-Young;Oh, Jin Hyeog;Kim, Kyoung Hwan;Youn, Hyun-Hee;Kim, Myunghoo;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.3
    • /
    • pp.424-435
    • /
    • 2020
  • Objective: The study was conducted to investigate variations in the immunophysiological responses to exercise-induced stress in Jeju and Thoroughbred horses. Methods: Blood samples were collected from the jugular veins of adult Jeju (n = 5) and Thoroughbred (n = 5) horses before and after 30 min of exercise. The hematological, biochemical, and immunological profiles of the blood samples were analyzed. Blood smears were stained and observed under a microscope. The concentration of cell-free (cf) DNA in the plasma was determined using real time polymerase chain reaction (PCR). Peripheral blood mononuclear cells (PBMCs) and polymorphonuclear cells were separated using Polymorphprep, and the expression of various stress-related and chemokine receptor genes was measured using reverse transcriptase (RT) and real-time PCR. Results: After exercise, Jeju and Thoroughbred horses displayed stress responses with significantly increased rectal temperatures, cortisol levels, and muscle catabolism-associated metabolites. Red blood cell indices were significantly higher in Thoroughbred horses than in Jeju horses after exercise. In addition, exercise-induced stress triggered the formation of neutrophil extracellular traps (NETs) and reduced platelet counts in Jeju horses but not in Thoroughbred horses. Heat shock protein 72 and heat shock protein family A (Hsp70) member 6 expression is rapidly modulated in response to exercise-induced stress in the PBMCs of Jeju horses. The expression of CXC chemokine receptor 4 in PBMCs was higher in Thoroughbred horses than in Jeju horses after exercise. Conclusion: In summary, the different immunophysiological responses of Jeju and Thoroughbred horses explain the differences in the physiological and anatomical properties of the two breeds. The physiology of Thoroughbred horses makes them suitable for racing as they are less sensitive to exercise-induced stress compared to that of Jeju horses. This study provides a basis for investigating the link between exercise-induced stresses and the physiological alteration of horses. Hence, our findings show that some of assessed parameters could be used to determine the endurance performance of horses.

Genetic Polymorphisms of Candidate Loci and Inheritance Ppatterns of Gray Coat Color in Jeju Horses. (제주마에서 총마 모색의 유전 양성과 후보 유전좌위의 유전적 다형성)

  • Han, Sang-Hyun;Lee, Chong-Eon;Kim, Nam-Young;Ko, Moon-Suck;Jeong, Ha-Yeon;Lee, Sung-Soo
    • Journal of Life Science
    • /
    • v.19 no.6
    • /
    • pp.793-798
    • /
    • 2009
  • This study was undertaken to reveal the relationship between genetic variations and inheritance patterns and the development of a systemic white coat color frequently observed in Jeju horses. It was determined that the white coat color occurred in all basic coat colored (black, bay and chestnut) horses by combining the phenotype and MC1R genotypes. There were no polymorphisms found in Jeju horses tested for mutational loci in the KIT gene, which were previously reported as potential mutations of the congenital dominant white coat color in other horse breeds in heterogeneity. The horses that had the 4.6-kb duplication in the STX17 intron 6 specifically showed the depigmented white coat color. Based on observation and STX17 genotypes, this depigmented whitening is defined as 'Chongma' (whitening, progressive graying with age-Gray) in Jeju horses. Pedigrees showed that this is an autosomal dominant inheritance pattern distinct from the bovine albinism caused by an autosomal recessive passion eye color. Because the gray phenotype is generally not completely expressed early in Jeju horses, it often makes them indistinguishable from other horses. Further studies are recommended for classification between the gray coat color and its similar phenotypes, such as the roan with its mixed hair colors appearing since neonatal period, acquired white hairs on wounded skin by veterinary treatment, and vitiligo-like skin pigmentation. However, study results revealing the relationship between the gray phenotype and genetic background suggested that useful information may be provided in regards to molecular breeding of Jeju horses.

Genetic Variations Analysis and Characterization of the Fifth Intron of Porcine NRAMP1 Gene

  • Yan, X.M.;Ren, J.;Ai, H.S.;Ding, N.S.;Gao, J.;Guo, Y.M.;Chen, C.Y.;Ma, J.W.;Shu, Q.L.;Huang, L.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.9
    • /
    • pp.1183-1187
    • /
    • 2004
  • The natural resistance-associated macrophage protein 1 (NRAMP1) gene was identified as a candidate gene controlling the resistance and susceptibility to a number of intracellular parasites in pigs. The genetic variations in a 1.6 kb region spanning exon 1 and exon 3 of the porcine NRAMP1 gene were investigated by PCR-HinfI-RFLP in samples of 1347 individuals from 21 Chinese indigenous pig populations and 3 western pig breeds. Three alleles (A, B, C) and four genotypes (AA, BB, AB, BC) were detected. Significant differences in genotype and allele frequencies were observed between Chinese indigenous pig populations and exotic pig breeds, while in general the differences in genotype and allele frequencies among Chinese indigenous pig populations were not significant. The allele C was detected only in Duroc, Leping Spotted and Dongxiang Spotted pig, and the two Chinese pig populations showed similar genotype and allele frequencies. Four Chinese Tibetan pig populations displayed genetic differentiation at the NRAMP1 gene locus. In addition, intron 5 of the NRAMP1 gene was isolated and characterized by directly sequencing the PCR products encompassing intron 5. The alignment of intron 5 of the porcine, human, equine and ovine NRAMP1 gene showed a similarity of 45.38% between pig and human, 52.55% between pig and horse, 63.47% between pig and sheep, respectively.