• Title/Summary/Keyword: hormonal receptors

Search Result 42, Processing Time 0.026 seconds

Expression of Bax and Bcl-2 in Tumour Cells and Blood Vessels of Breast Cancer and their Association with Angiogenesis and Hormonal Receptors

  • Jaafar, Hasnan;Abdullah, Suhaila;Murtey, Mogana Das;Idris, Fauziah M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.3857-3862
    • /
    • 2012
  • A total of 96 cases of invasive breast ductal carcinoma were examined for immunohistochemical expression of Bax and Bcl-2 in the epithelial tumor cells and endothelial cells of the blood vessels. We also investigated the association between both proteins in the epithelium in relation to tumor characteristics such as tumor size, grade, lymph node involvement, microvessel density (MVD), hormonal receptors expression and c-erbB-2 overexpression. Bax expression showed a significant association between tumor and endothelial cells (p<0.001) while Bcl-2 expression in tumor cells was inversely associated with that in the endothelial cells (p<0.001). Expression of Bcl-2 in tumor cells was strongly associated with expression of estrogen and progesterone receptors (p=0.003 and p=0.004, respectively). In addition, intratumoral MVD was significantly higher than peritumoral MVD (p<0.001) but not associated with Bax or Bcl-2 expression and other tumor characteristics. We concluded that the number of endothelial cells undergoing apoptosis was in direct linkage with the number of apoptotic tumor cells. Anti-apoptotic activity of the surviving tumor cells appears to propagate cancer progression and this was influenced by the hormonal status of the cells. Tumor angiogenesis was especially promoted in the intratumoral region and angiogenesis was independent of anti-apoptotic activity.

Thyroid Hormones Receptor/Reporter Gene Transcription Assay for Food Additives and Contaminants

  • Jeong Sang-Hee;Cho Joon-Hyoung
    • Toxicological Research
    • /
    • v.21 no.4
    • /
    • pp.333-338
    • /
    • 2005
  • Many of thyroid hormones disrupting chemicals induce effects via interaction with thyroid hormone and retinoic acid receptors and responsive elements intrinsic in target cells. We studied thyroid hormones disrupting effects of food additives and contaminants including BHA, BHT, ethoxyquin, propionic acid, sorbic acid, benzoic acid, CPM, aflatoxin B1, cadmium chloride, genistein, TCDD, PCBs and TDBE in recombinant HeLa cells containing plasmid construct for thyroxin responsive elements. The limit of response of the recombinant cells to T3 and T4 was $1\times10^{-12}\;M$. BHA. genistein, cadmium and TBDE were interacted with thyroid receptors with dose-responsive pattern. In addition, BHA, BHT, ethoxyquin, propionic acid, benzoic acid, sorbic acid, and TBDE showed synergism while cadmium chloride antagonism for T3-induced activity. This study elucidates that recombinant HeLa cell is sensitive and high-throughput system for the detection of chemicals that induce thyroid hormonal disruption via thyroid hormone receptors and responsive elements. Also this study raised suspect of BHA. BHT, ethoxyquin, propionic acid, benzoic acid, sorbic acid, TBDE, genisteine and cadmium chloride as thyroid hormonal system disruptors.

Discovery of New Steroid Hormonal Drugs (스테로이드 호르몬계 신약개발)

  • Lee, Jae-Woon-
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.11a
    • /
    • pp.93-98
    • /
    • 1994
  • Most drug discovery has focused in recent years on the development of molecules that either interact with or block receptors, proteins that act as on-off switches for genetic activity, on the surfaces of human cells. Now, we have developed a technology that targets “receptors inside the cell” (intracellular receptors), opening a new and compelling avenue for drug discovery. Our receptor-based small molecule drugs can be catagorized in two ways: 1) receptor agonists, or molecules that activate a receptor; and 2) receptor antagonists, or drugs that inactivate a receptor.

  • PDF

Relation of Alcohol/Tobacco use with Metastasis, Hormonal (Estrogen and Progesterone) Receptor Status and c-erbB2 Protein in Mammary Ductal Carcinoma

  • Leon-Hernandez, Saul Renan;Padilla, Eleazar Lara;Algara, Alfredo Cortes;Rodriguez, Noemi Cardenas;Sanchez, Esau Floriano;Cruz, Jaime Lopez;Barradas, Cesar Miguel Mejia;Bandala, Cindy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5709-5714
    • /
    • 2014
  • Background: An association between alcohol/tobacco use and risk of metastasis in breast cancer has been clearly shown. Materials and Methods: The present study explored, in 48 samples of tissue from mammary ductal carcinoma (taken from Mexican women with an average age of $58.2{\pm}10.9$ years), the association of risk of metastasis with the status of hormonal receptors and the c-erbB2 protein (by immunohistochemistry) as well as clinical, histopathological and sociodemographic factors. Results: Of 48 patients, 41.6% (20/48) presented with metastasis, 43.8% were positive for the estrogen receptor (RE+), 31.3% for the progesterone receptor (RP+) and 47.7% for c-erbB2 (c-erbB2+). The following combinations were found: RE+/RP+/c-erbB2+ 8.3%, RE+/RP+ 22.9%, RE+/RP- 20.8%, RE-/RP+ 8.3%, RE-/RP-/c-erbB2- 22.9% and RE-/RP- 47.8%. There were 12 patients who used alcohol/tobacco, of which 91.6% did not present metastasis and 81.9% were RE-/RP-. Compared to the RE-/RP-/c-erbB2+, the RE+/RP+/c-erbB2+ group had a 15-fold greater risk for metastasis (95%CI, 0.9-228.8, p=0.05). The carriers of the double negative hormonal receptors had a 4.7 fold greater probability of being (or having been) smokers or drinkers (95%CI, 1.0-20.4, p = 0.03). Conclusions: There was a clear protective effect of using alcohol and/or tobacco, in the cases included in the present study of mammary ductal carcinoma, associated with double negative hormonal receptors. However, this association could be due to a protective factor not measured (Neyman bias) or to a bias inherent in the rate of hospitalization (Berkson fallacy). This question should be explored in a broad prospective longitudinal study.

Androgen in the Uterus: A Compensator of Estrogen and Progesterone

  • Cheon, Yong-Pil;Lee, Dong-Mok;Chun, Tea-Hoon;Lee, Ki-Ho;Choi, In-Ho
    • Development and Reproduction
    • /
    • v.13 no.3
    • /
    • pp.133-143
    • /
    • 2009
  • Pivotal roles of steroid hormones in uterine endometrial function are well established from the mouse models carrying the null mutation of their receptors. Literally androgen belongs to male but interestingly it also detected in female. The fluctuations of androgen levels are observed during reproductive cycle and pregnancy, and the functional androgen receptor is expressed in reproductive organs including uterus. Using high throughput methodology, the downstream genes of androgen have been isolated and revealed correlations between other steroid hormones. In androgen-deficient mice, uterine responses to exogenous gonadotropins are impaired and the number of pups per litter is reduced dramatically. As expected androgen has important role in decidual differentiation through AR. It regulates specific gene network during those cellular responses. Recently we examined the effects of steroid hormonal complex containing high level of androgen. Interestingly, on the contrary to the androgen-alone administration, the hormonal complex did not disturb the decidual reaction and the pubs did not show any morphological abnormality. It is suspected that the complexity of communication between other steroid hormone and their receptors are the reasons. In summary, androgen exists in female blood and it suggests the importance of androgen in female reproduction. However, the complex interactions with other hormones are not fully understood compared with estrogen and progesterone. The further studies to evaluate the possible role of androgen are needed and important to provide the in vivo rational for the prevention of associated pregnancy complications and help human's health.

  • PDF

Gonadotropin-releasing Hormone and Its Receptor as a Therapeutic Concept in the Progression of Epithelial Ovarian Cancer

  • Kim, Ki-Yon;Choi, Kyung-Chul
    • Journal of Embryo Transfer
    • /
    • v.24 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • Ovarian cancer is a significant cause of cancer-related death in women, but the main biological causes remain open questions. Hormonal factors have been considered to be an important determinant causing ovarian cancer. Recent studies have shown that gonadotropin-releasing hormone (GnRH)-I and its analogs have clinically therapeutic value in the treatment of ovarian cancer. In addition, numerous studies have shown that the potential of GnRH-II in normal reproductive system or reproductive disorder. GnRH-I receptors have been detected in approximately 80% of ovarian cancer biopsy specimens as well as normal ovarian epithelial cells and immortalized ovarian surface epithelium cells. GnRH-II receptors have also been found to be more widely expressed than GnRH-I receptors in mammals, suggesting that GnRH receptors may have additional functions in reproductive system including ovarian cancer. The signal transduction pathway following the binding of GnRH to GnRH receptor has been extensively studied. The activation of protein kinase A/C (PKA/PKC) pathway is involved in the GnRH-I induced anti-proliferative effect in ovarian cancer cells. In addition, GnRH-I induced mitogen-activated protein kinase (MAPK) activation plays a role in anti-proliferative effect and apoptosis in ovarian cancer cells and the activation of transcriptional factors related to cellular responses. However, the role of GnRH-I and II receptors, there are discrepancies between previous reports. In this review, the role of GnRH in ovarian cancer and the mechanisms to induce anti-proliferation were evaluated.

The Determinations of Estrogen and Progesterone Receptor in Breast Cancer Cell by Radioimmunoabbay Method (방사선면역법(放射線免疫法)에 의(依)한 유방암세포내(乳房癌細胞內)의 Estrogen과 Progesterone 수용체(受容體)의 측정(測定))

  • Kim, Chi-Yeul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.15 no.2
    • /
    • pp.53-57
    • /
    • 1981
  • The estrogen and progesterone receptors which are bound to the cytoplasmic protein of cancer cells were measured in 20 patients with the early breast cancer by means of radioimmunoassay using charcoal. 1. The Patients with estrogen receptor positive were 13 (65%) of 20 cases and with progestrone receptor positive were 7 cases (35%) in the early breast cancer. 2. Coexistence of estrogen and progesterone receptor positive was noted in 7 cases (35%). The cases of estrogen receptor positive and progesterone receptor negative were 6 cases (33.3%), while there were no cases of estrogen receptor negative with progestrone receptor positive. 3. Coincidence of estrogen and progesterone negative was notied in 7 cases(35%). Conclusively, it is considered that the measurement of estrogen and progesterone receptors has relevance as predictive value, in the response to hormonal manipulations and chemotherapy for breast cancer patients.

  • PDF

Sequence to Structure Approach of Estrogen Receptor Alpha and Ligand Interactions

  • Chamkasem, Aekkapot;Toniti, Waraphan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2161-2166
    • /
    • 2015
  • Estrogen receptors (ERs) are steroid receptors located in the cytoplasm and on the nuclear membrane. The sequence similarities of human $ER{\alpha}$, mouse $ER{\alpha}$, rat $ER{\alpha}$, dog $ER{\alpha}$, and cat $ER{\alpha}$ are above 90%, but structures of $ER{\alpha}$ may different among species. Estrogen can be agonist and antagonist depending on its target organs. This hormone play roles in several diseases including breast cancer. There are variety of the relative binding affinity (RBA) of ER and estrogen species in comparison to $17{\beta}-estradiol$ (E2), which is a natural ligand of both $ER{\alpha}$ and $ER{\beta}$. The RBA of the estrogen species are as following: diethyl stilbestrol (DES) > hexestrol > dienestrol > $17{\beta}-estradiol$ (E2) > 17- estradiol > moxestrol > estriol (E3) >4-OH estradiol > estrone-3-sulfate. Estrogen mimetic drugs, selective estrogen receptor modulators (SERMs), have been used as hormonal therapy for ER positive breast cancer and postmenopausal osteoporosis. In the postgenomic era, in silico models have become effective tools for modern drug discovery. These provide three dimensional structures of many transmembrane receptors and enzymes, which are important targets of de novo drug development. The estimated inhibition constants (Ki) from computational model have been used as a screening procedure before in vitro and in vivo studies.

Comprehensive Evaluation System for Post-Metabolic Activity of Potential Thyroid-Disrupting Chemicals

  • Yurim Jang;Ji Hyun Moon;Byung Kwan Jeon;Ho Jin Park;Hong Jin Lee;Do Yup Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1351-1360
    • /
    • 2023
  • Endocrine-disrupting chemicals (EDCs) are compounds that disturb hormonal homeostasis by binding to receptors. EDCs are metabolized through hepatic enzymes, causing altered transcriptional activities of hormone receptors, and thus necessitating the exploration of the potential endocrine-disrupting activities of EDC-derived metabolites. Accordingly, we have developed an integrative workflow for evaluating the post-metabolic activity of potential hazardous compounds. The system facilitates the identification of metabolites that exert hormonal disruption through the integrative application of an MS/MS similarity network and predictive biotransformation based on known hepatic enzymatic reactions. As proof-of-concept, the transcriptional activities of 13 chemicals were evaluated by applying the in vitro metabolic module (S9 fraction). Identified among the tested chemicals were three thyroid hormone receptor (THR) agonistic compounds that showed increased transcriptional activities after phase I+II reactions (T3, 309.1 ± 17.3%; DITPA, 30.7 ± 1.8%; GC-1, 160.6 ± 8.6% to the corresponding parents). The metabolic profiles of these three compounds showed common biotransformation patterns, particularly in the phase II reactions (glucuronide conjugation, sulfation, GSH conjugation, and amino acid conjugation). Data-dependent exploration based on molecular network analysis of T3 profiles revealed that lipids and lipid-like molecules were the most enriched biotransformants. The subsequent subnetwork analysis proposed 14 additional features, including T4 in addition to 9 metabolized compounds that were annotated by prediction system based on possible hepatic enzymatic reaction. The other 10 THR agonistic negative compounds showed unique biotransformation patterns according to structural commonality, which corresponded to previous in vivo studies. Our evaluation system demonstrated highly predictive and accurate performance in determining the potential thyroid-disrupting activity of EDC-derived metabolites and for proposing novel biotransformants.

Predictive Value of IHC4 Score for Pathological Response to Neoadjuvant Chemotherapy in Hormone Receptor-Positive Breast Cancer

  • Elsamany, Shereef;Elmorsy, Soha;Alzahrani, Abdullah;Rasmy, Ayman;Abozeed, Waleed N;Mohammed, Amrallah A;Sherisher, Mohamed A;Abbas, Mohammed M;Mashhour, Miral
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7975-7979
    • /
    • 2015
  • Purpose: This study aimed to explore the value of IHC4 in predicting pathological response after neoadjuvant chemotherapy in patients with hormonal receptor (HR)-positive breast cancer (BC). Materials and Methods: In this retrospective exploratory study, data for 68 HR-positive BC patients who received neoadjuvant chemotherapy were recorded. IHC4 scores were calculated based on estrogen receptors/progesterone receptors, Ki-67 and HER2 status. Logistic and ordinal regression analyses in addition to likelihood ratio test were used to explore associations of IHC4 scores and other clinico-pathological parameters with pathological complete response (pCR) and pathological stage. Results: Taking the 25th percentile as the cut-off, a lower IHC4 score was associated with an increased probability of pCR (low; 52.9% vs. High; 21.6%, OR=4.1, 95% CI=1.28-13.16, p=0.018) and a lower pathological stage (OR=3.9, 95% CI=1.34-11.33, p=0.012). When the IHC4 score was treated as a continuous variable, a lower score was again associated with an increased probability of pCR (OR=1.010, 95% CI=1.001-1.018, p=0.025) and lower pathological stage (OR=1.009, 95% CI=1.002-1.017, P=0.008). Lower clinical stage was associated with a better pCR rate that was of borderline significance (P=0.056). When clinical stage and IHC4 score were incorporated together in a logistic model, the likelihood ratio test gave a P-value of 0.004 after removal of the IHC4 score and 0.011 after removal of the stage, indicating a more significant predictive value of the IHC4 score for pCR. Conclusions: This study suggests that the IHC4 score can predict pathological response to neoadjuvant chemotherapy in HR-positive BC patients. This finding now needs to be validated in a larger cohort of patients.