• 제목/요약/키워드: horizontal resolution

검색결과 335건 처리시간 0.026초

A Study on Compact Network RTK for Land Vehicles and Real-Time Test Results

  • Song, Junesol;Park, Byungwoon;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제7권1호
    • /
    • pp.43-52
    • /
    • 2018
  • In recent years, the need of high accuracy navigation for vehicles has increased due to the development of autonomous driving vehicles and increase in land transportation convenience. This study is performed for vehicle users to achieve a performance of centimeter-level positioning accuracy by utilizing Compact Network Real-time Kinematic (RTK) that is applicable as a national-level infrastructure. To this end, medium-baseline RTK was implemented in real time to estimate accurate integer ambiguities between reference stations for reliable generation of Network RTK correction using the linear combination of carrier-phase observations and L1/L2 pseudo-range measurements. The residual tropospheric error was estimated in real time to improve the accuracy of double-differenced integer ambiguity resolution between network configuration reference stations that have at least 30 km or longer baseline distance. In addition, C++ based software was developed to enable real-time generation and broadcasting of Compact Network RTK correction information by utilizing an accurately estimated double-differenced integer ambiguity values. As a result, the horizontal and vertical 95% accuracy was 2.5cm and 5.2cm, respectively, without performance degradation due to user's position change within the network.

WRF 모형을 이용한 한반도 집중 호우에 대한 지형 효과의 수치 모의 연구 (A Numerical Simulation Study of Orographic Effects for a Heavy Rainfall Event over Korea Using the WRF Model)

  • 이지우;홍성유
    • 대기
    • /
    • 제16권4호
    • /
    • pp.319-332
    • /
    • 2006
  • This study examines the capability of the WRF (Weather Research and Forecasting) model in reproducing heavy rainfall that developed over the Korean peninsula on 26-27 June 2005. The model is configured with a triple nesting with the highest horizontal resolution at a 3-km grid, centered at Yang-dong, Gyeonggi-province, which recorded the rainfall amount of 376 mm. In addition to the control experiment employing realistic orography over Korea, two consequent sensitivity experiments with 1) no orography, and 2) no land over Korea were designed to investigate orographic effects on the development of heavy rainfall. The model was integrated for 48 hr, starting at 1200 UTC 25 June 2005. The overall features of the large-scale patterns including a cyclone associated with the heavy rainfall are reasonably reproduced by the control run. The spatial distribution of the simulated rainfall over Korea agreed fairly well with the observed. The amount of predicted maximum rainfall at the 3-km grid is 377 mm, which located about 50 km southeast from the observed point, Yang-Dong, indicating that the WRF model is capable of predicting heavy rainfall over Korea at the cloud resolving resolutions. Further, it was found that the complex orography over the Korean peninsula plays a role in enhancing the rainfall intensity by about 10%. The land-sea contrast over the peninsula was fund to be responsible for additional 10% increase of rainfall amount.

임펄시브형 시추공용 탄성파 송신신호 시작시간 측정에 관한 연구 (A Study to Estimate the Onset Time of an Impulsive Borehole Source)

  • 이두성
    • 지구물리와물리탐사
    • /
    • 제6권2호
    • /
    • pp.71-76
    • /
    • 2003
  • 정확한 초동 발췌는 고해상 속도 토모그램 도출에 중요한 요소이다. 주시 발췌의 정확도에 영향을 주는 2가지 요인은 지질학적 요인과 기계적인 요인이 있다. 중요한 기계적인 요인은 발파시간 제어이다. 임펄시브형 시추공 탄성파 송신원에 의한 기록에서 다음과 같은 문제가 확인되었다. 즉, 불규칙한 발파시간 제어 문제와 기록에 나타난 발파시간의 불확실성이다. 이러한 발파시간 문제는 발췌된 초동에 정확도를 저하시키게 되며, 따라서 속도 토모그램을 왜곡시키게 된다. 본 연구에서는 수평방향의 속도와 NMO 속도를 반복적으로 비교함으포써 최적의 발파시간을 산출하는 방법을 제시하였다.

GENERATION OF GEO-SPATIAL INFORMATION USING KOMPSAT-2 IMAGERY

  • Lee, Hyun-Jik;Ru, Ji-Ho;Yu, Young-Geol;Lee, Kyu-Man
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.14-17
    • /
    • 2008
  • KOMPSAT-2 is the seventh high-resolution satellite in the world that provides both 1m panchromatic images and 4m multispectral images of the GSD. It is expected to be used across many different fields including digital mapping, territorial and environmental monitoring. However, due to the complexity and security concern involved with the use of the MSC, the use of KOMPSAT-2 images are limited in terms of geometric data, such as satellite orbits and detailed mapping information. This study aims to generate the DEM and orthoimage by using the stereo images of KOMPSAT-2 and to explore the applicability of geo-spatial information with KOMPSAT-2. In order to ensure generation of DEMs of optimal accuracy, the RPCs data and a suitable number of GCPs were used. The accuracy of DEM generated in this research compared with DEM generated from 1:5,000 digital map. The mean differences between horizontal position of the orthoimage and the digital map data are found to be ${\pm}$3.1m, which is in the range of ${\pm}$3.5m, within the permitted limit of a 1:5,000 digital map. The results suggest that DEM can be adequately used to produce digital maps under 1:5,000 scale.

  • PDF

디지털 영상 확대를 위한 적응형 Pseudomedian 필터의 설계 및 성능 분석 (Design and Performance Analysis of Adaptive Pseudomedian Filter for Digital Image Enlargement)

  • 곽노윤;황병원
    • 한국정보처리학회논문지
    • /
    • 제7권4호
    • /
    • pp.1305-1315
    • /
    • 2000
  • It is known that a digital image enlargement technique can increase the size of he image but the practical enhancement of resolution is trifle because the frequency bandwidth of the original image is basically limited. To solve this problem, this paper proposes the digital image enlargement technique which interpolates the interpolation points of horizontal and vertical direction by weighting according to the direction of edge information with the component of FOI(First Order Interpolation)and output of the pseudomedian filter for image enlargement and interpolates the interpolation points of diagonal direction by selectively transposing the direction of the subwindows of the pseudomedian filter according to the distribution of neighbored pixels thereto in the extended image. According to the proposed methods, the digital image enlargement which preserves the characteristic of the pseudomedian filter capable of keeping the reconstruction of edge information and reflects the advantage of FOI can be performed. Therefore, visual artifacts could be effectively suppressed, and most characteristics and shape of the original image can be reconstructed as well.

  • PDF

동기신호 최적화 기법을 통한 고품위급 모니터의 디지털 신호처리회로 구현 (English Digital Signal Processing Circuit in HD Monitor using Synchronization Signal Optimization)

  • 천성렬;김익환;이호근;하영호
    • 한국통신학회논문지
    • /
    • 제28권11C호
    • /
    • pp.1152-1160
    • /
    • 2003
  • 본 논문에서는 다양한 해상도의 신호 입력을 지원하는 고품위급 모니터의 디지털 신호처리 회로를 제안한다. 기존의 디지털 회로에서 ADC(Analog to Digital Convertor)와 VDP(Video Display Processor)로부터 발생하는 내부 디지털 PLL(Phase-locked Loop)의 낮은 성능과 IC의 내부 편차문제, 모듈간의 상이한 전압 차이 때문에, 다양한 입력 신호에서 안정된 동기신호 처리를 할 수 없는 문제가 있었다. 이를 해결하기 위해서 다양한 해상도의 신호 입력으로부터 동기 신호들의 규칙성을 이용하여 동기 신호를 관리하면서 시스템의 간섭을 최소화하는 동기신호 최적화 기법을 제안하였다. 제안한 방법을 적용한 결과 다양한 해상도에서 안정적으로 동기신호를 처리함으로써 여러 모드의 입력신호에 대응할 수 있었다.

CFD simulation of compressible two-phase sloshing flow in a LNG tank

  • Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • 제1권1호
    • /
    • pp.31-57
    • /
    • 2011
  • Impact pressure due to sloshing is of great concern for the ship owners, designers and builders of the LNG carriers regarding the safety of LNG containment system and hull structure. Sloshing of LNG in partially filled tank has been an active area of research with numerous experimental and numerical investigations over the past decade. In order to accurately predict the sloshing impact load, a new numerical method was developed for accurate resolution of violent sloshing flow inside a three-dimensional LNG tank including wave breaking, jet formation, gas entrapping and liquid-gas interaction. The sloshing flow inside a membrane-type LNG tank is simulated numerically using the Finite-Analytic Navier-Stokes (FANS) method. The governing equations for two-phase air and water flows are formulated in curvilinear coordinate system and discretized using the finite-analytic method on a non-staggered grid. Simulations were performed for LNG tank in transverse and longitudinal motions including horizontal, vertical, and rotational motions. The predicted impact pressures were compared with the corresponding experimental data. The validation results clearly illustrate the capability of the present two-phase FANS method for accurate prediction of impact pressure in sloshing LNG tank including violent free surface motion, three-dimensional instability and air trapping effects.

중규모 모델 WRF로부터 모의된 한반도 풍력-기상자원 특성 (Characteristics of a Wind Map over the Korean Peninsula Based on Mesoscale Model WRF)

  • 변재영;최영진;서범근
    • 대기
    • /
    • 제20권2호
    • /
    • pp.195-210
    • /
    • 2010
  • This study uses mesoscale model WRF to investigate characteristics of wind fields in South Korea, a region with a complex terrain. Hourly wind fields were simulated for one year representing mean characteristics of an 11-year period from year 1998 to year 2008. The simulations were performed on a nested grid from 27 km down to 1 km horizontal resolution. Seasonal variation of wind speed indicates that wind is strongest during the spring and winter seasons. Spatial distribution of mean wind speed shows wind energy potential at its peak in mountainous region of Gangwon-do, the east coast, and Jeju Island. Wind speed peaks at night in mountainous and eastern coastal regions, and in the afternoon inland and in the southwestern coastal region. The simulated wind map was verified with four upper-air sounding observations. Wind speed was shown to have a more pronounced overestimation tendency relative to observation in the winter rather than summer. The results of this wind mapping study help identify locations with the highest wind energy potential in South Korea.

Validation of Ocean General Circulation Model (FMS-MOM4) in Relation with Climatological and Argo Data

  • Chang, You-Soon;Cho, Chang-Woo;Youn, Yong-Hoon;Seo, Jang-Won
    • 한국지구과학회지
    • /
    • 제28권5호
    • /
    • pp.545-555
    • /
    • 2007
  • Ocean general circulation model developed by GFDL on the basis of MOM4 of FMS are examined and evaluated in order to elucidate the global ocean status. The model employs a tripolar grid system to resolve the Arctic Ocean without polar filtering. The meridional resolution gradually increases from $1/3^{\circ}$ at the equator to $1^{\circ}$ at $30^{\circ}N(S)$. Other horizontal grids have the constant $1^{\circ}$ and vertical grids with 50 levels. The ocean is also coupled to the GFDL sea ice model. It considers tidal effects along with fresh water and chlorophyll concentration. This model is integrated for a 100 year duration with 96 cpu forced by German OMIP and CORE dataset. Levitus, WOA01 climatology, serial CTD observations, WOCE and Argo data are all used for model validation. General features of the world ocean circulation are well simulated except for the western boundary and coastal region where strong advection or fresh water flux are dominant. However, we can find that information concerning chlorophyll and sea ice, newly applied to MOM4 as surface boundary condition, can be used to reduce a model bias near the equatorial and North Pacific ocean.

Construction of Orthogonal Basis Functions with Non-Divergent Barotropic Rossby-Haurwitz Waves

  • Cheong, Hyeong-Bin;Jeong, Hanbyeol;Kim, Wonho
    • 한국지구과학회지
    • /
    • 제35권5호
    • /
    • pp.333-341
    • /
    • 2014
  • A new set of basis functions was constructed using the Rossby-Haurwitz waves, which are the eigenfunctions of nondivergent barotropic vorticity equations on the sphere. The basis functions were designed to be non-separable, that is, not factored into functions of either the longitude or the latitude. Due to this property, the nodal lines of the functions are aligned neither along with the meridian nor the parallel. The basis functions can be categorized into groups of which members have the same degree or the total wavenumber-like index on the sphere. The orthonormality of the basis functions were found to be close to the machine roundoffs, giving the error of $O(10^{-15})$ or $O(10^{-16})$ for double-precision computation (64 bit arithmetic). It was demonstrated through time-stepping procedure that the basis functions were also the eigenfunctions of the non-divergent barotropic vorticity equations. The projection of the basis functions was carried out onto the low-resolution geopotential field of Gaussian bell, and compared with the theory. The same projections were performed for the observed atmospheric-geopotential height field of 500 hPa surface to demonstrate decomposition into the fields that contain disturbance of certain range of horizontal scales. The usefulness of the new basis functions was thus addressed for application to the eigenmode analysis of the atmospheric motions on the global domain.