• Title/Summary/Keyword: horizontal loading

Search Result 498, Processing Time 0.027 seconds

Behaviors of Pile Croup Installed Near Inclined Ground (경사지반에 인접하여 설치된 무리말뚝의 거동연구)

  • Chae, Kwang-Seok;Ugai, Keizo;Yoon, Gil-Lim
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.53-64
    • /
    • 2003
  • Many transmission towers, high-rise buildings and bridges are constructed near steep slopes and are supported by large-diameter piles. These structures may be subjected to large lateral loads, such as violent winds and earthquakes. Widely used types of foundations for these structures are pier foundations, which have large-diameters with high stiffness. The behavior of a pier foundation subjected to lateral loads is similar to that of a short rigid pile because both elements seem to fail by rotation developing passive resistance on opposite faces above and below the rotation point, unlike the behavior of a long flexible pile. This paper describes the results of several numerical studies performed with a three-dimensional finite element method (FEM) of model tests of a laterally loaded short pile located near slopes, respectively. In this paper, the results of model tests of single piles and pile groups subjected to lateral loading, in homogeneous sand with 30$^{\circ}$ slopes and horizontal ground were analyzed by the 3-D FE analyses. The pile was assumed to be linearly elastic. The sand was assumed to have non-associative characteristics, following the MC-DP model. The failure criterion is governed by the Mohr-Coulomb equation and the plastic potential is given by the Drucker-Prager equation. The main purpose of this paper is the validation of the 3-D elasto-plastic FEM by comparisons with the experimental data.

Verification of the Numerical Analysis on Caisson Quay Wall Behavior Under Seismic Loading Using Centrifuge Test (원심모형시험을 이용한 케이슨 안벽의 지진시 거동에 대한 수치해석 검증)

  • Lee, Jin-Sun;Park, Tae-Jung;Lee, Moon-Gyo;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.57-70
    • /
    • 2018
  • In this study, verification of the nonlinear effective stress analysis is performed for introducing performance based earthquake resistance design of port and harbor structures. Seismic response of gravitational caisson quay wall in numerical analysis is compared directly with dynamic centrifuge test results in prototype scale. Inside of the rigid box, model of the gravitational quay wall is placed above the saturated sand layer which can show the increase of excess pore water pressure. The model represents caisson quay wall with a height of 10 m, width of 6 m under centrifugal acceleration of 60 g. The numerical model is made in the same dimension with the prototype scale of the test in two dimensional plane strain condition. Byrne's liquefaction model is adopted together with a nonlinear constitutive model. Interface element is used for sliding and tensional separation between quay wall and the adjacent soils. Verification results show good agreement for permanent displacement of the quay wall, horizontal acceleration at quay wall and soil layer, and excess pore water pressure increment beneath the quay wall foundation.

Seismic Reliability Analysis of Offshore Wind Turbine with Twisted Tripod Support using Subset Simulation Method (부분집합 시뮬레이션 방법을 이용한 꼬인 삼각대 지지구조를 갖는 해상풍력발전기의 지진 신뢰성 해석)

  • Park, Kwang-Yeun;Park, Wonsuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.125-132
    • /
    • 2019
  • This paper presents a seismic reliability analysis method for an offshore wind turbine with a twisted tripod support structure under earthquake loading. A three dimensional dynamic finite element model is proposed to consider the nonlinearity of the ground-pile interactions and the geometrical characteristics of the twisted tripod support structure where out-of-plane displacement occurs even under in-plane lateral loadings. For the evaluation of seismic reliability, the failure probability was calculated for the maximum horizontal displacement of the pile head, which is calculated from time history analysis using artificial earthquakes for the design return periods. The application of the subset simulation method using the Markov Chain Monte Carlo(MCMC) sampling is proposed for efficient reliability analysis considering the limit state equation evaluation by the nonlinear time history analysis. The proposed method can be applied to the reliability evaluation and design criteria development of the offshore wind turbine with twisted tripod support structure in which two dimensional models and static analysis can not produce accurate results.

Calibration of Load and Resistance Factors for Breakwater Foundation Design. Application on Different Types of Superstructures (방파제 기초설계를 위한 하중저항계수의 보정(다른 형식의 상부구조 적용))

  • Huh, Jungwon;Doan, Nhu Son;Mac, Van Ha;Dang, Van Phu;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.287-292
    • /
    • 2021
  • Load and resistance factor design is an efficient design approach that provides a system of consistent design solutions. This study aims to determine the load and resistance factors needed for the design of breakwater foundations within a probabilistic framework. In the study, four typical types of Korean breakwaters, namely, rubble mound breakwaters, vertical composite caisson breakwaters, perforated caisson breakwaters, and horizontal composite breakwaters, are investigated. The bearing capacity of breakwater foundations under wave loading conditions is thoroughly examined. Two levels of the target reliability index (RI) of 2.5 and 3.0 are selected to implement the load and resistance factors calibration using Monte Carlo simulations with 100,000 cycles. The normalized resistance factors are found to be lower for the higher target RI as expected. Their ranges are from 0.668 to 0.687 for the target RI of 2.5 and from 0.576 to 0.634 for the target RI of 3.0.

Analysis on Seismic Resistance Capacity of Hollow Concrete Block Reinforced Foundation Ground by Using Shaking Table Test (진동대 시험을 이용한 중공블록 보강 기초의 내진성능분석)

  • Shin, Eun-Chul;Lee, Yeun-Jeung;Yang, Tae Chul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.85-93
    • /
    • 2021
  • The seventy percentage of Korean Peninsular is covered by the mountainous area, and the depth of west sea and south sea is relatively shallow. Therefore, a large scale land reclamation from the sea has been implemented for the construction of industrial complex, residental area, and port and airport facilities. The common problem of reclaimed land is consisted of soft ground, and hence it has low load bearing capacity as well as excessive settlement upon loading on the ground surface. The hollow concrete block has been used to reinforce the loose and soft foundation soil where the medium-high apartment or one-story industrial building is being planned to be built. Recently the earthquakes with the magnitude of 4.0~5.0 have been occurred in the west coastal and southeast coastal areas. Lee (2019) reported the advantages of hollow concrete block reinforced shallow foundation through the static laboratory bearing capacity tests. In this study, the dynamic behavior of hollow concrete block reinforced sandy ground with filling the crushed stone in the hollow space has been investigated by the means of shaking table test with the size of shaking table 1000 mm × 1000 mm. Three types of seismic wave, that is, Ofunato, Hachinohe, Artificial, and two different accelerations (0.154 g, 0.22 g) were applied in the shaking table tests. The horizontal displacement of structure which is situated right above the hollow concrete block reinforced ground was measured by using the LVDT. The relative density of soil ground are varied with 45%, 65%, and 85%, respectively, to investigate the effectiveness of reinforcement by hollow block and measured the magnitude of lateral movement, and compared with the limit value of 0.015h (Building Earthquake Code, 2019). Based on the results of shaking table test for hollow concrete block reinforced sandy ground, honeycell type hollow block gives a large interlocking force due to the filling of crushed stone in the hollow space as well as a great interface friction force by the confining pressure and punching resistance along the inside and outside of hollow concrete block. All these factors are contributed to reduce the great amount of horizontal displacement during the shaking table test. Finally, hollow concrete block reinforced sandy ground for shallow foundation is provided an outstanding reinforced method for medium-high building irrespective of seismic wave and moderate accelerations.

Determination of Optimal Concentration of LPE (Lysophosphatidylethanolamine) for Postharvest Stability and Quality of Strawberry Fruit (딸기 수확 후 저장기간 연장 및 품질 개선을 위한 LPE (Lysophosphatidylethanolamine) 적정 처리농도 구명)

  • Choi, Ki-Young;Kim, Il-Seop;Yun, Young-Sik;Choi, Eun-Young
    • Journal of Bio-Environment Control
    • /
    • v.25 no.3
    • /
    • pp.153-161
    • /
    • 2016
  • This study aims to determine the optimal maturity of strawberry fruits as affected by the application of lysophosphatidylethanolamine (LPE) and its optimal concentration for postharvest stability and quality. Prior to application of treatments, fruits that were classified into levels of maturity (0%, 50%, 70% and 100%) were air-dried for 40 minutes and stored in the refrigerator at $4^{\circ}C$ for 12 days. Fruits at 70% maturity were dipped into 0, 10, 50 and $100mg{\cdot}L^{-1}$ LPE solutions for 1 minute. A lower range of concentration (0, 2.5, 5, 10 and $25mg{\cdot}L^{-1}$) was applied to fruits at different maturity levels. Data on fresh weight, hardness at vertical and horizontal loading positions, color index and sugar content during storage were collected. Based on fruits with 70% maturity dipped in LPE concentrations, there were no significant differences found on fresh weight, color index and sugar content. However, the application of $10mg{\cdot}L^{-1}$ LPE gave the highest hardness at vertical loading position while $100mg{\cdot}L^{-1}$ had the lowest average. At lower range of LPE concentrations, fresh weight was not significantly affected by LPE application and maturity levels. Hardness of fruits was mainly based on the maturity of the fruits. Increased hardness was observed in the fruits with 70% maturity dipped into the $5mg{\cdot}L^{-1}$ of LPE solution. The hardness and Hunter's $L^*$ and $b^*$ value of 100% matured fruits gave lowest values despite the application of $25mg{\cdot}L^{-1}$ LPE 12 days after storage.

Assessment of Carsington Dam Failure by Slope Stability and Dam Behavior Analyses (사면안정 해석과 댐 거동분석을 통한 Carsington Dam 파괴의 고찰)

  • 송정락;김성인
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.87-102
    • /
    • 1991
  • It has been reported that the failure of Carsington Dam in Eng1and occured due to the existence of a thin yellow clay layer which was not identified during the design work, and due to pre-existing shears of the clay layer. The slope stability analyses during the design work, which utilized traditional circular arc type failure method and neglected the existence of the clay layer, showed a safety factor of 1.4. However, the post-failure analyses which utilized translational failure mode considering the clay layer and the pre-existing shear deformation revealed the reduction of safety factor to unity. The post-failure analysis assumed 10。 inclination of the horizontal forces onto each slice based on the results of finite element analyses. In this paper, Bishop's simplified method, Janbu method, and Morgenstern-Price method were used for the comparison of both circular and translational failure analysis methods. The effects of the pre-existing shears and subsquent movement were also considered by varying the soil strength parameters and the pore pressure ratio according to the given soi1 parameters. The results showed factor of safefy 1.387 by Bishop's simplified method(STABL) which assumed circular arc failure surface and disregarding yellow clay layer and pre-failure material properties. Also the results showed factor of safety 1.093 by Janbu method(STABL) and 0.969 by Morgenstern-Price method(MALE) which assumed wedge failure surface and considerd yellow clay layer using post failure material properties. In addition, dam behavior was simulated by Cam-Clay model FEM program. The effects of pore pressure changes with loading and consolidation, and strength reduction near or at failure were also considered based on properly assumed stress-strain relationship and pore pressure characteristics. The results showed that the failure was initiated at the yellow clay layer and propagated through other zones by showing that stress and displacement were concentrated at the yel1ow clay layer.

  • PDF

Stress distribution following face mask application using different finite element models according to Hounsfield unit values in CT images (CT상의 HU 수치에 따른 상악골 전방견인 효과의 유한요소 분석)

  • Chung, Dong-Hwa
    • The korean journal of orthodontics
    • /
    • v.36 no.6
    • /
    • pp.412-421
    • /
    • 2006
  • Objective: The result of finite element analysis depends on material properties, structural expression, density of element, and boundar or loading conditions. To represent proper elastic behavior, a finite element model was made using Hounsfield unit (HU) values in CT images. Methods: A 13 year 6 month old male was used as the subject. A 3 dimensional visualizing program, Mimics, was used to build a 3D object from the DICOM file which was acquired from the CT images. Model 1 was established by giving 24 material properties according to HU. Model 2 was constructed by the conventional method which provides 2 material properties. Protraction force of 500g was applied at a 45 degree downward angle from Frankfort horizontal (FH) plane. Results: Model 1 showed a more flexible response on the first premolar region which had more forward and downward movement of the maxillary anterior segment. Maxilla was bent on the sagittal plane and frontal plane. Model 2 revealed less movement in all directions. It moved downward on the anterior part and upward on the posterior part, which is clockwise rotation of the maxilla. Conclusion: These results signify that different outcomes of finite element analysis can occur according to the given material properties and it is recommended to use HU values for more accurate results.