• Title/Summary/Keyword: horizontal loading

Search Result 498, Processing Time 0.029 seconds

Investigation of Friction Characteristics between Concrete Slab and Subbase Layers (콘크리트 슬래브와 보조기층 사이의 마찰특성 조사)

  • lim, Jin Sun;Park, Moon Gil;Nam, Young Kug;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6D
    • /
    • pp.719-726
    • /
    • 2009
  • In this study, a series of push-off tests for lean concrete, aggregate, asphalt subbases mainly used in Korea were performed to investigate the friction characteristics between the slab and subbase layers. Use of separation membrane and wet condition of subbase were other parameters in the tests. Horizontal displacements of the slabs and friction coefficients were measured at 1st loading, stable condition (2nd and 3rd loadings), and wet condition (4th loading) by applying 40mm/hour horizontal loadings. Larger maximum friction coefficients were measured in order of the lean concrete, asphalt, aggregate, and subbases using the separation membrane at 1st loading, and in order of the asphalt, aggregate, lean concrete, and subbases using the separation membrane at stable and wet conditions. The friction coefficients of the aggregate and asphalt subbases which did not used the separation membrane decreased by the wet condition while the subbases using the separation membrane were not affected. Additional push-off tests for effects of slab thickness and temperature sensitivity of asphalt will be performed. And, effects of the friction characteristics between the slab and subbase layers on behavior and performance of concrete pavements will be investigated by structural analyses using the test results.

The Structural Behavior of Strong Axis Connections by Type of Weak Axis Connection - In Case of Loading Gravity Load - (약축 접합부 형식에 따른 강축 접합부의 구조적 거동 - 연직하중이 작용하는 경우 -)

  • Kim, Sang Seup;Lee, Do Hyung;Ham, Jeong Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.275-284
    • /
    • 2004
  • The behavior of the connection for beam-to-column weak axis connection and its details should be identified. Thus, each element is considered a panel zone, and the horizontal stiffener's presence or absence and position in bracket-type welding connection are used as variables to compare the behavior of strong axis connection and weak axis connection. In this study, the strength of connection is calculated by substituting the simple beam-strengthened vertical stiffeners for connection in the presence of horizontal stiffeners. In the absence of horizontal stiffeners, the strength of connection can be calculated using local flange bending strength considering local web yielding strength, web crippling, and web buckling strength. The results of the theoretical analysis and experiments are compared.

A Study on Flexural and Shear Behavior of the Structure with Steel Plate Concrete to Reinforced Concrete Member's Connection (철근 콘크리트와 강판 콘크리트 간 이질접합부로 구성된 구조물의 휨 및 전단거동 특성 연구)

  • Hwang, Kyeong Min;Lee, Kyung Jin;Lee, Jong Bo;Won, Deok Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.267-275
    • /
    • 2012
  • This paper describes the experimental study on the structural behavior of the joint plane between a RC(Reinforced Concrete) wall and a SC(Steel Plate Concrete) wall under out-of plane flexural loads and in-plane shear loads. The test specimens were produced with L and I shape to assess efficiently flexural and shear behavior of the structures. In order to consider dynamic loads such as earthquake, cyclic loading tests were carried out. As results of the out-of plane flexural tests, ductile failure mode of vertical bars was shown under a push load and the failure load was more than nominal strength of the specimen. And the latter test was performed to verify the variation which was composition presence of horizontal bars in the SC member. The test results showed that capacity of the specimens was more than their nominal strength regardless of composition presence of horizontal bars.

Numerical Investigation of The Effect of External Stores on Tail Wing Surfaces of a Generic Fighter Aircraft (전투기 형상의 외부장착물이 꼬리날개에 미치는 영향에 대한 수치적 연구)

  • Kim, Min-Jae;Kwon, Oh-Joon;Kim, Ji-Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.211-219
    • /
    • 2008
  • A three-dimensional inviscid flow solver has been developed based on unstructured meshes for the investigation of the effect of the external stores on the tail surfaces of a generic fighter aircraft. The numerical method is based on a vertex-centered finite-volume discretization and an implicit point Gauss-Seidel time integration. The calculations were made for a steady flow and the computed results were compared with experimental data to validate the flow solver. An unsteady time-accurate computation of the generic fighter aircraft with external stores at transonic flight conditions showed that the external stores cause unsteady loading on the horizontal tail surface due to the mutual interference between their wake and the horizontal tail surface. It was shown that downward deflection of the trailing edge flap significantly reduces the undesirable interference effect.

Small Scaled Laboratory Test of Eco-Friendly Backfill Materials with Bottom Ash (바톰애쉬를 이용한 환경친화적 뒤채움재의 실내모형실험)

  • Lee, Kwan-Ho;Lee, Kyung-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1889-1894
    • /
    • 2012
  • A small-scale chamber test laboratory for controlled low strength materials with bottom ash and recycled in-situ soil have been carried out. Laboratory test which was simulated during construction stage was conducted. The vertical deflection of 4.43mm to 6.6mm, and the horizontal deflection of 5.49mm to 15.9 mm were measured during backfilling. In case of loading, the vertical deflection of 2.41mm to 8.69mm, and the horizontal deflection of 1.66mm to 2.53mm were measured. Its residual deflections were 1.40mm to 5.93mm for vertical and 1.66mm to 2.53mm for lateral. The vertical and horizontal deflecto of controlled low strength materials were smaller than that of sand backfill. Also, it was same trend for the measured surface settlement.

Sensitivity Analysis on Rockfill Material Parameters Influencing Crest Displacement of Concrete-Faced Rockfill Dam (콘크리트 표면차수벽형 석괴댐 정상부 변위에 영향을 미치는 입력물성에 대한 민감도분석)

  • Ha, Ik-Soo;Seo, Min-Woo;Shin, Dong-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.846-853
    • /
    • 2006
  • In this study, quantitative sensitivity analysis on rockfill material influencing the dam crest displacement of Concrete-Faced Rockfill Dam(CFRD) was carried out. The purpose of this study is to indicate the most important input parameter and to show the quantitative variation of displacement at the crest of CFR type dam with this input parameter. The rockfill material properties for parametric study were obtained from the results of large scale triaxial tests on 34 rockfill materials in the 22 different sites. From the statistical analysis on these data, some statistical characteristics of rockfill material properties such as property range, distribution characteristics, and correlation between the properties were investigated. based on these characteristics, 27 property combinations were constituted by Latin Hypercube sampling method. Dam crest displacements after construction, impounding, and earthquake loading were evaluated by static and dynamic numerical analysis on each combination. From the sensitivity analysis, it was found that the crest displacement of CFR type dam was absolutely affected by the shear modulus of rockfill material and the effect of friction angle of it was negligible. This relative difference of sensitivity was more outstanding in case of crest settlement than in case of crest horizontal displacement. Also, it was found that the settlement and horizontal displacement of dam crest logarithmically decreased as the shear modulus increased and the difference between the maximum value and the minimum vale amounted to about 9.5 times in case of settlement and about 10 times in case of horizontal displacement.

  • PDF

Strength Experimental Study on Precast Column-R.C. Foundation Anchor Joint Subjected to Cyclic Horizontal Loading (반복-수평력을 받는 프리캐스트기둥- RC기초 Anchor 접합부의 내력 실험 연구)

  • Lee, Ho;Jung, Hwoan-Mok;Cha, Byung-Gi;Byun, Sang-Min
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.2
    • /
    • pp.45-52
    • /
    • 2009
  • This paper experimentally evaluates the strength characteristics of precast column-R.C. foundation anchor joint subjected to the cyclic horizontal load. The study presents differences in accurate stress transfer path and destruction mechanism between the concrete structural body applying the precast column-R.C. foundation anchor joint and the concrete structural body applying the steel joint. the result from width load experiment on reinforcing steel under the cyclic horizontal load provides the necessary minimum insertion length to construct the precast column-R.C. foundation anchor joint. This study also presents the accurate stress transfer path and destruction mechanism on the anchor joint th meet the customer's requirements, comparing stress transfer path and destruction mechanism provided by the experiment and those provided by the product manual. Eventually, this study presents all the necessary fundamental data to provide the construction design with accurate number of reinforcing steel, diameter of the steel, fixation length of the steel, etc. to build the optimum precast concrete column.

  • PDF

Analysis of the Bearing Behavior of a Tripod Bucket Installed in Clay (점성토 지반에 설치된 Tripod 버켓기초의 지지거동 분석)

  • Kim, Sung-Ryul;eong, Jae-Uk;Oh, Myounghak;Kwon, Osoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3C
    • /
    • pp.105-111
    • /
    • 2012
  • Bucket foundations, which are used in the foundations of offshore wind turbines, should be able to withstand large amounts of horizontal and moment loads. Tripod bucket foundation, which combines three single buckets, has been used to increase horizontal and moment capacities. This study performed numerical analysis using ABAQUS (2010), to analyze the group effect and the bearing capacity of a tripod bucket in clay. Parametric studies were performed varying the bucket spacing ratio S/D (S=spacing between the centers of the bucket and the tower; D=diameter of the bucket) and depth ratio L/D (L=embedded length of skirt). The applied constitutive models were a linear elastic perfectly plastic model with Tresca yield criteria for normally consolidated clay and an elastic model for buckets. Loading in the vertical, horizontal, and moment directions was simulated with an increase in each movement at a reference point. The bearing behavior and the capacities of a single and a tripod bucket were compared. Capacity evaluation method of the tripod bucket was suggested using the capacity of a single bucket.

Approximate Analysis of Shear Wall-Frame Structure For Seismic Design (전단벽-골조 시스템의 내진설계를 위한 근사해석법)

  • Yoo, Suk-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.99-106
    • /
    • 2019
  • A wall-frame structure resists horizontal load by the interaction between the flexural mode of the shear wall and the shear mode of the frame, which implies that the frame deflects only by reverse bending of the columns and girders, and that the columns are axially rigid. However, as the height of frame increases the shear mode of frame changes to flexural mode, which is due to the extension and shortening of the columns. An approximate hand method for estimating horizontal deflection and member forces in high-rise shear wall-frame structures subjected to horizontal loading is presented. The method is developed from the continuous medium theory for coupled walls and expressed in non-dimensional structural parameters. It accounts for bending deformations in all individual members as well as axial deformations in the columns. The deformations calculated from the presented approximate method and matrix analysis by computer program are compared. The presented approximate method is more accurate for the taller structures.

Frictional responses of concrete-to-concrete bedding planes under complex loading conditions

  • Dang, Wengang;Konietzky, Heinz;Li, Xiang
    • Geomechanics and Engineering
    • /
    • v.17 no.3
    • /
    • pp.253-259
    • /
    • 2019
  • Concrete-to-concrete bedding planes (CCBP) are observed from time to time due to the multistep hardening process of the concrete materials. In this paper, a series of direct/cyclic shear tests are performed on CCBP under static and dynamic normal load conditions to study the frictional behavior effect by the shear velocities, normal impact frequencies, horizontal shear frequencies, normal impact force amplitudes, horizontal shear displacement amplitudes and normal load levels. According to the experimental results, apparent friction coefficient k ($k=F_{Shear}/F_{Normal}$) shows different patterns under static and dynamic load conditions at the stable shear stage. k is nearly constant in direct shear tests under constant normal load conditions (DCNL), while it is cyclically changing with nearly constant peak value and valley value for the direct shear tests under dynamic normal load conditions (DDNL), where k increases with decreasing normal force and decreases with increasing normal force. Shear velocity has little influence on peak values of k for the DCNL tests, but increasing shear velocity leads to increasing valley values of k for DDNL tests. It is also found that, the valley values of k ascend with decreasing impact normal force amplitude in DDNL tests. The changing pattern of k for the cyclic shear tests under constant and dynamic normal load conditions (CCNL and CDNL tests) are similar, but the peak value of k is smaller in CDNL tests than that in CCNL tests. Normal load levels, shear displacement amplitudes, vertical impact frequencies, horizontal shear frequencies and normal impact force amplitudes have little influence on the changing pattern of k for the cyclic shear tests. The tests of this study provide useful data in understanding the frictional behavior of the CCBP under distinct loadings, and these findings are very important for analyzing the stability of the jointed geotechnical structures under complicated in situ stress conditions.