• Title/Summary/Keyword: horizontal load test

Search Result 343, Processing Time 0.025 seconds

Research on Fire Safety of Mortar-Containing Waste Tire Powders and Flame Retardant (폐타이어 분말과 난연제가 혼입된 모르타르의 화재안전에 관한 연구)

  • Park, Jeong-Jin;Son, Ki-Sang
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.12-17
    • /
    • 2010
  • The purpose of this study is to determine how effectively waste tire recycled material mixed with flame retardant work in combating fire. As discovered in the previous study, waste tire mixed with cement mortar has more insulation capacity. However, this mortar is weak against fire. Therefore flame retardant, with a specific proportional mix, will be added to increase its fire prevention capacity. Tests will be made in accordance with ISO 5657 procedures for measuring fire ignition time, flame and shape variation of test pieces at the Building Material Test Institute. The test piece will be set up with horizontal levels having a constant radiation heat of $1{\sim}5W/cm^2$. Temperature transfers and increases from the surface into the interior. Combustible gases result due to pyrolysis, and regular contact is maintained between the fire source and the center of the test piece for assessment purposes. Ignition has not been occurred without adding retardant meaning that there is almost no possibility of ignition of waste tire particle. This fact can be considered as fire load to appreciate a volume of combustion materials. Flame is not occurred due to heat-absorbing effect by adding non-organic series retardant into waste tire particle. Conclusions have been summarized as follows; 1) Combustion of building material can be decreased by adding retardant to waste tire-mixing mortar. But compressive strength and insulation capacity of the material should be measured later. 2) Firing prevention and ignition are main points of building fire. Reasonable fire engineering assessment of interior material should be made for establishing effective disaster prevention system.

A Study for Improved Design Criteria of Composite Pile Joint Location based on Case Analysis (사례 분석을 통한 복합말뚝 이음위치의 설계 기준식 개선 연구)

  • Hwang, Uiseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.3
    • /
    • pp.21-30
    • /
    • 2019
  • Composite pile, which is composed of the steel pipe pile in which the large horizontal force acts and the PHC pile in which the small horizontal force acts by a special connecting devices, is being commercialized as a base material for civil engineering structures. The core of such a composite pile can be said to be a design criterion for estimating the joint position and stability of the connection device between steel pipe pile and PHC pile. In Korea, there is no precise specification for the location of composite pile joints. In the LH Design Department (Korea Land & Housing Corporation, 2009), "Application of composite pile design and review of design book marking" was made with reference to Road Design Practice Volume 3 (Korea Expressway Corporation, 2001). this is used as a basis of the design of the composite pile. It can not be regarded as a section change of the composite pile, so it has a limitation in application. Therefore, In this study, we propose a design criterion for the location of the section of the composite pile (joint of steel pipe pile and PHC pile) and evaluate the stability and economical efficiency of it by using experimental method and analytical method. Analysis of composite pile design data installed in 79 domestic bridges abutment showed that the stresses, bending moments, and displacements acting on the pile body and connection of the pile were analyzed. Through the redesign process, it was confirmed that the stresses generated in the connecting device occur within the allowable stress values of the connecting device and the PHC pile. In conclusion, the design proposal of composite pile joint location through empirical case study in this study is an improved design method considering both stability and economical efficiency in designing composite pile.

Study on seismic performance of connection joint between prefabricated prestressed concrete beams and high strength reinforcement-confined concrete columns

  • Jiang, Haotian;Li, Qingning;Jiang, Weishan;Zhang, De-Yi
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.343-356
    • /
    • 2016
  • As the common cast-in-place construction works fails to meet the enormous construction demand under rapid economic growth, the development of prefabricated structure instead becomes increasingly promising in China. For the prefabricated structure, its load carrying connection joint play a key role in maintaining the structural integrity. Therefore, a novel end plate bolt connecting joint between fully prefabricated pre-stressed concrete beam and high-strength reinforcement-confined concrete column was proposed. Under action of low cycle repeated horizontal loadings, comparative tests are conducted on 6 prefabricated pre-stressed intermediate joint specimens and 1 cast-in-place joint specimen to obtain the specimen failure modes, hysteresis curves, skeleton curves, ductility factor, stiffness degradation and energy dissipation capacity and other seismic indicators, and the seismic characteristics of the new-type prefabricated beam-column connecting joint are determined. The test results show that all the specimens for end plate bolt connecting joint between fully prefabricated pre-stressed concrete beam and high-strength reinforcement-confined concrete column have realized the design objectives of strong column weak beam. The hysteretic curves for specimens are good, indicating desirable ductility and energy dissipation capacity and seismic performances, and the research results provide theoretical basis and technical support for the promotion and application of prefabricated assembly frames in the earthquake zone.

Seismic Retrofit of School Facilities Using Rapping and Attaching Composite Material (부착 및 래핑형 복합소재를 이용한 학교시설의 내진보강)

  • Park, Choon-Wook;Kim, Dong-Hwi;Kwon, Min-Ho;Choi, Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.135-142
    • /
    • 2014
  • In paper after the strong earthquake of recently the Korea neighborhood, the Korean government survey show that the 86% of school buildings in Korea are in potential damage risk and only 14% of them are designed as earthquake-resistance buildings. Earthquake Reinforcing projects of school have been a leading by the ministry of education, however their reinforcing methods done by not proved a engineering by experiment which results in uneconomical and uneffective rehabilitation for the future earthquake. An experimental and analytical study have been conducted for the shear reinforcing method of RC beam by axis and horizontal axis load using attaching composite beam. Based on the previous research, in this study, design examples are given to show the performance evaluation for the column reinforcing of old school buildings using nonlinear analysis is going to be conducted and strengthening method is going to be on the market after their performance is proved by the test.

Spudcan Design under Combined Load in Southwestern Sea of Korea (복합하중을 고려한 국내 서남해 지반에서의 Spudcan 설계)

  • Yoo, Jinkwon;Park, Duhee;Mandokhail, Saeed-ullah Jan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.10
    • /
    • pp.13-22
    • /
    • 2016
  • An optimized spudcan was designed for the Southwestern Sea, an area mostly comprised of sand and soft clay layers. The spudcan was designed using guidelines by SNAME, ISO, and InSafeJIP, as well as the yield surface for combined loads. The probe test method was applied to define a yield surface used in estimating spudcan stability. Numerical analyses that considered vertical, horizontal, and moment loads in Southwestern Sea resulted in a design of 8 m diameter spudcan. Additionally, the empirical equations suggested by previous studies can estimate a reasonable spudcan bearing capacity at shallow depth. Each yield surface calculated from Mohr Coulomb and Hardening soil model showed different shapes, however the yield surface also grew with increasing spudcan diameter. This yield surface is a useful reference, along with site investigation results and published guidelines, to estimate the stability of a spudcan in the Southwestern Sea.

Model Tests on the Behavior of Geogrid Reinforced Soil Walls with Vertical Spacing of Reinforcement Layers (보강재 설치 간격에 따른 지오그리드 보강토옹벽의 변형거동에 관한 모형실험)

  • 조삼덕;안태봉;이광우;오세용
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.109-116
    • /
    • 2004
  • The model tests are conducted to assess the behavior characteristics of geogrid reinforced soil walls according to different surcharge pressures and reinforcement spacings. The models are built in the box having dimension, 100cm tall, 140cm long, and 100cm wide. The reinforcement used is geogrid(tensile strength 2.26t/m). Decomposed ganite soil(SM) is used as a backfill material. The strain gauges and LVDTs are Installed to obtain the strain in the reinforcements and the displacements of the wall face. From the results, it can be concluded that the more the reinforcement tensile strength increases, the more the wall displacements and the geogrid strains decreases. The maximum wall displacements and geogrid strains of the model walls occur due to the uniform surcharge pressure at the 0.7H from the bottom of the wall. The horizontal displacements of the wall face nonlinearly increase with the increase of surcharge pressures, and this nonlinear behavior is significantly presented for larger surcharge due to the nonlinear tensile strength-strain relationship of the reinforcements.

An Analysis of the Frictional Energy on the Rubber Block (고무 블록의 마찰에너지 해석)

  • Yoo, Hyun-Seung;Kim, Doo-Man;Lee, Sang-Ju;Ko, Bum-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.619-626
    • /
    • 2007
  • The analysis of the frictional energy of the rubber block with contact to the surface is necessary to study the wear for rubber. It is important to define the relationship of the frictional energy and wear, as the most theory of the wear of rubber product is based on the frictional energy of rubber block. To predict the life of the rubber block, the most of research has been focused on the use of the finite element analysis or the actual experiments which need the many time and expensive costs.Therefore, this research is achieved the successful results of the analysis to the frictional energy by analytic method. This frictional energy is function of the material properties, the shape of block, the vertical and horizontal load and the block moving speed. The analytical results are compared with the test results of this paper which can be used for the analysis of the friction behavior for the wear estimation of the rubber products.

Evaluation of Rocking Mechanism for Embedded Shallow Foundation via Horizontal Slow Cyclic Tests (수평반복하중 실험을 이용한 근입된 얕은 기초의 회전거동 메커니즘 평가)

  • Ko, Kil-Wan;Ha, Jeong-Gon;Park, Heon-Joon;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.8
    • /
    • pp.47-59
    • /
    • 2016
  • Rocking behavior of shallow foundation reduces the superstructure load during earthquake. However, because of deficiency of understanding of rocking mechanism and soil permanent deformation, it has not been applied to real construction. In this study, slow cyclic tests were conducted for embedded shallow foundations with various slenderness ratio via centrifuge tests. From the variation of earth pressure 'soil rounding surface' phenomenon which makes maximum overturning moment equal to ultimate moment capacity was observed. Rocking and sliding behavior mechanism was evaluated. Also, nonlinear behavior and energy dissipation increase as rotation angle increases. And ultimate moment capacity of embedded foundation is larger than that of surface foundation. Finally, adequate ultimate moment capacity can be suggested for seismic design through this study.

Experimental Study on the Static Behavior of the Spliced PSC Box Girder (분절 PSC 박스거더의 정적거동에 관한 실험적 연구)

  • Chung, Won-Seok;Kim, Jae-Hueng;Chung, Dae-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.433-439
    • /
    • 2007
  • The main objective of the paper is to investigate the static behavior of a prestressed concrete (PSC) girder that has been spliced with precast box segments. A 20 m long full-scale spliced PSC girder is fabricated and tested to compare its static performance against a monolithic girder. The monolithic girder has the same geometric and material properties with respect to the spliced girder. This includes infernal strain, deflections, neutral axis position, and crack patterns for both girders. The test also consists of monitoring relative displacements occurring across the joints. Both the horizontal displacement (gap) and vertical displacement (sliding) are measured throughout the loading procedure. All results have been compared to those obtained from the monolithic girder. It has been demonstrated that the spliced girder offers close behavior with respect to the monolithic girder up to the crack load. Both girders exhibits ductile flexural failure rather than abrupt shear failure at joints.

The Effect of Wall Friction on Deformation Characteristics of the Cellular Bulkhead (Cell 구조물의 변형특성에 미치는 셀 벽면 마찰의 영향)

  • Son, Dae-San;Jang, Jeong-Wook;Kim, Kyong-Yeol;Kim, Hyun-Guk;Chung, Youn-In
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.4
    • /
    • pp.230-234
    • /
    • 2010
  • This study examined the effect of wall friction on deformation characteristics of the cellular bulkhead, in terms of artificial wall friction based on the results of model tests according to the existing penetration ratio and loading height. 1. The effect of wall friction on deformation characteristics of the cellular bulkhead turned out to be less as the loading height decreases and the penetration ratio increases. The yield load also becomes less as wall friction decreases. 2. The ratio of the rotational displacement to the horizontal displacement of the cellular bulkhead becomes less as the loading height decreases and the penetration ratio increases. Hence it is concluded that the effect of wall friction has close relationship with the rotational displacement.