• Title/Summary/Keyword: horizontal load test

Search Result 345, Processing Time 0.022 seconds

Kinematic Analysis of a 6-DOF Ultra-Precision Positioning Stage Based on Flexure Hinge (플렉셔 힌지 기반 6-자유도 초정밀 위치 결정 스테이지의 기구학 해석)

  • Shin, Hyun-Pyo;Moon, Jun-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.7
    • /
    • pp.579-586
    • /
    • 2016
  • This paper describes kinematic analysis of a 6-degrees-of-freedom (DOF) ultra-precision positioning stage based on a flexure hinge. The stage is designed for processes which require ultra-precision and high load capacities, e.g. wafer-level precision bonding/assembly. During the initial design process, inverse and forward kinematic analyses were performed to actuate the precision positioning stage and to calculate workspace. A two-step procedure was used for inverse kinematic analysis. The first step involved calculating the amount of actuation of the horizontal actuation units. The second step involved calculating the amount of actuation of the vertical actuation unit, given the the results of the first step, by including a lever hinge mechanism adopted for motion amplification. Forward kinematic analysis was performed by defining six distance relationships between hinge positions for in-plane and out-of-plane motion. Finally, the result of a circular path actuation test with respect to the x-y, y-z, and x-z planes is presented.

Static Cushioning Properties of Corrugated Fiberboard and Creep Behavior of Boxes (골판지의 정적완충특성과 골판지상자의 크리이프 거동)

  • 박종민;김만수;정성원
    • Journal of Biosystems Engineering
    • /
    • v.20 no.4
    • /
    • pp.323-332
    • /
    • 1995
  • The horizontal compression test of some selected corrugated fiberboards was performed to determine the cushioning properties of them. Creep behavior of the corrugated fiberboard boxes, which have been widely used in rural area for packaging fruits and vegetables, was tested. The flute crushing stress of the corrugated fiberboard depended upon mainly the basic weight of the corrugated medium, comparing with the combined basic weight of corrugated fiberboard. When moisture content of the corrugated fiberboards was increased about 8% (d.b.), the flute crushing stress of them was decreased at the rate of 44%~64%. The cushion factor of the sample fiberboards showed much higher value at the lower moisture content of them. These trends appeared to be more obvious at the lower applied stress levels. Also, the cushion factors of the double wall corrugated fiberboards(DW) were observed to be little higher than those of the single wall corrugated fiberboards(SW). The creep behavior of the sample boxes was found to be highly moisture and static load dependent. The creep behavior of the corrugated fiberboard boxes could be well analyzed by the asymptotic slope derived from the creep model.

  • PDF

Vibration simulation of a multi-story high-speed railway station

  • Gao, Mangmang;Xiong, Jianzhen;Xu, Zhaojun
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.365-372
    • /
    • 2010
  • Station is an important building in high-speed railway, and its vibration and noise may significantly affect the comfort of waiting passengers. A coupling vibration model for train-structure system is established to analyze and evaluate the vibration level of a typical waiting hall under dynamic train load. The motion of a four-axle vehicle with two suspension system is modeled in multi-body dynamics with linear springs and dampers employed. The station is modeled as a whole finite element structure which is 113 m in longitudinal and 163.5 m in lateral, and the stiffness of the station foundation is considered. According to the assumptions that both wheel and rail are rigid bodies and keep contact to each other in vertical direction, and the wheel/rail interaction and displacement coordination in horizontal direction is defined by the simplified Kalker creep theory, the vehicle spatial vibration model has 27 degrees-of-freedom. An overall analysis procedure is made of the train moving through the station, by which the dynamic responses of the train and the station are calculated. According to the comparison between analysis and test results, the actual connection status between different parts of the station is estimated and the vibration level of the waiting hall is evaluated.

Seismic Retrofit in Educational Facilities Using Attaching Composite Material (부착형 복합소재를 이용한 교육시설의 내진보강)

  • Park, Choon-Wook;Song, Geon-Su;Park, Ik-Hyun;Kim, Dong-Hwi
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.3
    • /
    • pp.73-81
    • /
    • 2013
  • In paper after the strong earthquake of recently the Korea neighborhood, the Korean government survey show that the 86% of school buildings in Korea are in potential damage risk and only 14% of them are designed as earthquake-resistance buildings. Earthquake Reinforcing projects of school have been a leading by the ministry of education, however their reinforcing methods done by not proved a engineering by experiment which results in uneconomical and uneffective rehabilitation for the future earthquake. An experimental and analytical study have been conducted for the shear reinforcing method of column by axis and horizontal axis load using attaching composite beam. Based on the previous research, in this study, Design examples are given to show the performance evaluation for the column reinforcing of old school buildings using nonlinear analysis is going to be conducted and strengthening method is going to be on the market after their performance is proved by the test.

Analytical model for hybrid RC frame-steel wall systems

  • Mo, Y.L.;Perng, S.F.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.2
    • /
    • pp.127-139
    • /
    • 2003
  • Reinforced concrete buildings with shearwalls are very efficient to resist earthquake disturbances. In general, reinforced concrete frames are governed by flexure and shearwalls are governed by shear. If a structure included both frames and shearwalls, it is generally governed by shearwalls. However, the ductility of ordinary reinforced concrete is very limited. To improve the ductility, a series of tests on framed shearwalls made of corrugated steel was performed previously and the experimental results were compared with ordinary reinforced concrete frames and shearwalls. It was found that ductility of framed shearwalls could be greatly improved if the thickness of the corrugated steel wall is appropriate to the surrounding reinforced concrete frame. In this paper, an analytical model is developed to predict the horizontal load-displacement relationship of hybrid reinforced concrete frame-steel wall systems according to the analogy of truss models. This analytical model is based on equilibrium and compatibility conditions as well as constitutive laws of corrugated steel. The analytical predictions are compared with the results of tests reported in the previous paper. It is found that proposed analytical model can predict the test results with acceptable accuracy.

Experimental study of masonry infill reinforced concrete frames with and without corner openings

  • Khoshnoud, Hamid Reza;Marsono, Kadir
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.641-656
    • /
    • 2016
  • Reinforced concrete frame buildings with masonry infill walls are one of the most popular structural systems in the world. In most cases, the effects of masonry infill walls are not considered in structural models. The results of earthquakes show that infill walls have a significant effect on the seismic response of buildings. In some cases, the buildings collapsed as a result of the formation of a soft story. This study developed a simple method, called corner opening, by replacing the corner of infill walls with a very flexible material to enhance the structural behavior of walls. To evaluate the proposed method a series of experiments were conducted on masonry infill wall and reinforced concrete frames with and without corner openings. Two 1:4 scale masonry infill walls with and without corner openings were tested under diagonal tension or shear strength and two RC frames with full infill walls and with corner opening infill walls were tested under monotonic horizontal loading up to a drift level of 2.5%. The experimental results revealed that the proposed method reduced the strength of infill wall specimens but considerably enhanced the ductility of infill wall specimens in the diagonal tension test. Moreover, the corner opening in infill walls prevented the slid shear failure of the infill wall in RC frames with infill walls.

Constitutive Modeling of Confined Concrete under Concentric Loading

  • Lee, Cha-Don;Park, Ki-Bong;Cha, Jun-Sil
    • KCI Concrete Journal
    • /
    • v.13 no.1
    • /
    • pp.69-78
    • /
    • 2001
  • The inelastic behavior of a reinforced concrete columns is influenced by a number of factors : 1) level of axial load, 2) tie spacing, 3) volumetric ratio of lateral steel, 4) concrete strength, 5) distribution of longitudinal steel, 6) strength of lateral steel, 7) cover thickness, 8) configuration of lateral steel, 9) strain gradient, 10) strain rate, 11) the effectively confined concrete core area, and 12) amount of longitudinal steel. A new constitutive model of a confined concrete is suggested in order to investigate the nonlinear behavior of the reinforced concrete columns under concentric loading. The developed constitutive model for the confined concrete takes into account the effects of effectively confined area as well as the horizontal and longitudinal distributions of the confining pressures. None of the existing models incorporated these two main effects at the same time. A total of different six constitutive models for the behavior of the confined concrete under concentric compression were compared with the sixty-one test results reported by different researchers. The superiority of the developed model in its accuracy is demonstrated by evaluating the error function, which compares the weighted averages for the sum of squared relative differences in peak compressive strength and corresponding strain, stress at strain equal to 0.015, and total area under stress-strain curve up to strain equal to 0.015.

  • PDF

Sloshing Damping in a Swaying Rectangular Tank Using a Porous Bulkhead (투과성 격벽을 이용한 수평 운동하는 사각형 탱크내의 슬로싱 감쇠)

  • Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.228-236
    • /
    • 2018
  • The performance of a porous swash bulkhead for the reduction of the resonant liquid motion in a swaying rectangular tank was investigated based on the assumption of linear potential theory. The Galerkin method (Porter and Evans, 1995) was used to solve the potential flow model by adding a viscous frictional damping term to the free-surface condition. By comparing the experimental results and the analytical solutions, we verified that the frictional damping coefficient was 0.4. Darcy's law was used to consider the energy dissipation at a porous bulkhead. The tool that was developed with a built-in frictional damping coefficient of 0.4 was confirmed by small-scale experiments. Using this tool, the free-surface elevation, hydrodynamic force (added mass, damping coefficient) on a wall, and the horizontal load on a bulkhead were assessed for various combinations of porosity and submergence depth. It was found that the vertical porous bulkhead can suppress sloshing motions significantly when properly designed and by selecting the appropriate porosity(${\approx}0.1$) and submergence depth.

Review on the Fire Resistance and Pumpability Performance of Fiber Reinforced High Strength Concrete

  • Kwon, Hae-Won;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.1
    • /
    • pp.58-65
    • /
    • 2013
  • Currently, many high-rise buildings are built in Korea for land-efficient utilization and vista. In high-rise buildings this tall, the use of high-strength concrete is essential to reduce the cross-section of structure members and secure axial load. However, this high strength concrete is vulnerable to spalling by fire, due to the water vapor pressure caused by the very high temperature in fire. To prevent this, the main method used is to reinforce the concrete with fiber. However, there has been little research on the pumpability of fiber reinforced high strength concrete. For this reason, this study features a performance review based on the properties and pumpability of fiber reinforced high strength concrete. In addition, the parameter of rheology was measured by extracting mortar from the concrete, and friction factor was measured through a 400 m horizontal pipe pumping test using the fiber reinforced high strength concrete. The basic information on fiber reinforced high strength concrete that we obtain through the experiments and review will contribute to the field.

Effects of joint aspect ratio on required transverse reinforcement of exterior joints subjected to cyclic loading

  • Chun, Sung Chul
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.705-718
    • /
    • 2014
  • This paper presents an analytical model for determining the transverse reinforcement required for reinforced concrete exterior beam-column joints subjected to reversed cyclic loading. Although the joint aspect ratio can affect joint shear strength, current design codes do not consider its effects in calculating joint shear strength and the necessary amount of transverse reinforcement. This study re-evaluated previous exterior beam-column joint tests collected from 11 references and showed that the joint shear strength decreases as the joint aspect ratio increases. An analytical model was developed, to quantify the transverse reinforcement required to secure safe load flows in exterior beam-column joints. Comparisons with a database of exterior beam-column joint tests from published literature validated the model. The required sectional ratios of horizontal transverse reinforcement calculated by the proposed model were compared with those specified in ACI 352R-02. More transverse reinforcement is required as the joint aspect ratio increases, or as the ratio of vertical reinforcement decreases; however, ACI 352R-02 specifies a constant transverse reinforcement, regardless of the joint aspect ratio. This reevaluation of test data and the results of the analytical model demonstrate a need for new criteria that take the effects of joint aspect ratio into account in exterior joint design.