• Title/Summary/Keyword: horizontal load

Search Result 951, Processing Time 0.023 seconds

Research on hysteretic characteristics of EBIMFCW under different axial compression ratios

  • Li, Sheng-cai;Lin, Qiang
    • Earthquakes and Structures
    • /
    • v.22 no.5
    • /
    • pp.461-473
    • /
    • 2022
  • Energy-saving block and invisible multiribbed frame composite wall (EBIMFCW) is an important shear wall, which is composed of energy-saving blocks, steel bars and concrete. This paper conducted seismic performance tests on six 1/2-scale EBIMFCW specimens, analyzed their failure process under horizontal reciprocating load, and studied the effect of axial compression ratio on the wall's hysteresis curve and skeleton curve, ductility, energy dissipation capacity, stiffness degradation, bearing capacity degradation. A formula for calculating the peak bearing capacity of such walls was proposed. Results showed that the EBIMFCW had experienced a long time deformation from cracking to failure and exhibited signs of failure. The three seismic fortification lines of the energy-saving block, internal multiribbed frame, and outer multiribbed frame sequentially played important roles. With the increase in axial compression ratio, the peak bearing capacity and ductility of the wall increased, whereas the initial stiffness decreased. The change in axial compression ratio had a small effect on the energy dissipation capacity of the wall. In the early stage of loading, the influence of axial compression ratio on wall stiffness and strength degradation was unremarkable. In the later stage of loading, the stiffness and strength degradation of walls with high axial compression ratio were low. The displacement ductility coefficients of the wall under vertical pressure were more than 3.0 indicating that this wall type has good deformation ability. The limit values of elastic displacement angle under weak earthquake and elastic-plastic displacement angle under strong earthquake of the EBIMFCW were1/800 and 1/80, respectively.

Analysis of Ship Collision Behavior of Pile Supported Structure (파일지지 구조물의 선박 충돌거동에 대한 해석)

  • Bae, Yong Gwi;Lee, Seong Lo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.323-330
    • /
    • 2008
  • The ship collision analysis of steel pile group as protection system of bridge in navigable waterways was performed to analyze the structural characteristics of protective structure during ship collision. The analysis encompassed finite element modeling of ship and pile, modeling of material non-linearity, hard impact analysis, displacement-based analysis and soft impact analysis for collision scenarios. Through the analysis of hard impact with a rigid wall, impact load for each collision type of ship bow was estimated. In the displacement-based analysis the estimate of energy which protection system can absorb within its maximum horizontal clearance so as to secure bridge pier from vessel contact during collision was performed. Soft impact analysis for various collision scenarios was conducted and the collision behaviors of vessel and pile-supported protection system were reviewed for the design of protection system. The understanding of the energy dissipation mechanism of pile supported structure and colliding vessel would give us the optimized design of protective structure.

Assessment of Lateral Behavior of Steel-concrete Composite Piles Using Full-scale Model Tests (실대형 모형 실험을 이용한 강관합성 말뚝의 수평 거동 특성 평가)

  • Kwon, Hyungmin;Lee, Juhyung;Park, Jaehyu;Chung, Moonkyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5C
    • /
    • pp.199-206
    • /
    • 2009
  • This paper presents full scale model tests on the various types of model piles carried out to estimate the behavior of laterally loaded steel-concrete composite piles. Subgrade-reaction spring system was developed to simulate the reaction of ground in laboratory condition. In addition, lateral behavior of piles under working load condition was estimated using composite loading system, which is available for independent loading in vertical and horizontal direction. Steel-concrete composite piles showed higher efficiency in lateral resistance rather than drilled shaft made of reinforced concrete. The lateral resistance of composite pile was larger than the summation of steel pile and concrete pile due to the composite effect by steel casing. The effect of shear key or strength of concrete on the behavior of composite pile was examined. The substitution of reinforcing bar by steel casing was also investigated.

Evaluation of horizontal-axis-three-blade wind turbines' behavior under different tornado wind fields

  • Mohamed AbuGazia;Ashraf El Damatty;Kaoshan Dai;Wensheng Lu;Nima Ezami
    • Wind and Structures
    • /
    • v.37 no.6
    • /
    • pp.413-423
    • /
    • 2023
  • Wind turbines are usually steel hollow structures that can be vulnerable to dramatic failures due to high-intensity wind (HIW) events, which are classified as a category of localized windstorms that includes tornadoes and downbursts. Analyzing Wind Turbines (WT) under tornadoes is a challenging-to-achieve task because tornadoes are much more complicated wind fields compared with the synoptic boundary layer wind fields, considering that the tornado's 3-D velocity components vary largely in space. As a result, the supporting tower of the wind turbine and the blades will experience different velocities depending on the location of the event. Wind farms also extend over a large area so that the probability of a localized windstorm event impacting one or more towers is relatively high. Therefore, the built-in-house numerical code "HIW-WT" has been developed to predict the straining actions on the blades considering the variability of the tornado's location and the blades' pitch angle. The developed HIWWT numerical model incorporates different wind fields that were generated from developed CFD models. The developed numerical model was applied on an actual wind turbine under three different tornadoes that have different tornadic structure. It is found that F2 tornado wind fields present significant hazard for the wind turbine blades and have to be taken into account if the hazardous impact of this type of unexpected load is to be avoided.

Influence of loading and unloading of hydraulic support on the caving property of top coal

  • Huayong Lv;Fei Liu;Xu Gao;Tao Zhou;Xiang Yuan
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.103-111
    • /
    • 2023
  • The caving property of top coal is a key factor to the success of top coal caving mining. The influence law of cyclic loading and unloading of hydraulic support on top coal caving is of great significance to improve the recovery rate of top coal. The similar simulation methods were used to study the dynamic evolution of the top coal cracks under the multi-cycle action of the support, and the parameters of top coal cracks were analyzed quantitatively in this paper. The results show that the top coal cracks can be divided into horizontal cracks and vertical cracks under the cyclic loading and unloading of the support. With the increase of the times of the support cycles loading and unloading, the load on the support decreases, the fractal dimension of the cracks increases, the number and total length of the top coal cracks increases, and the top coal caving is getting better. With the increase of the times of multi-cycle loading and unloading, the fractal dimension, total crack length and crack rate of top coal show a trend of rapid increase first and then increase slowly. Both the total length of the top coal cracks and the crack rate basically show linear growth with the change of the fractal dimension. The top coal caving can be well improved and the coal resource recovery rate increased through the multi-cycle loading and unloading.

A Study on the Relationship between Response Spectrum and Seismic Fragility Using Single Degree of Freedom System (단자유도 해석모델을 활용한 응답스펙트럼과 지진취약도 곡선과의 관계에 대한 연구)

  • Park, Sangki;Cho, Jeong-rae;Cho, Chang-beck;Lee, JinHyuk;Kim, Dong-Chan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.245-252
    • /
    • 2023
  • In general, the design response spectrum in seismic design codes is based on the mean-plus-one-standard deviation response spectrum to secure high safety. In this study, response spectrum analysis was performed using seismic wave records adopted in domestic horizontal design spectrum development studies, while three response spectra were calculated by combining the mean and standard deviation of the spectra. Seismic wave spectral matching generated seismic wave sets matching each response spectrum. Then, seismic fragility was performed by setting three damage levels using a single-degree-of-freedom system. A correlation analysis was performed using a comparative analysis of the change in the response spectrum and the seismic fragility concerning the three response spectra. Finally, in the case of the response spectrum considering the mean and standard deviation, like the design response spectrum, the earthquake load was relatively high, indicating that conservative design or high safety can be secured.

Evaluation of Structural Performance of Multi-tiered Roof Korean Traditional Timber Building Daeungbojeon Hall of Magoksa Temple Under Vertical Load (중층 전통 목조건축 마곡사 대웅보전의 수직하중에 대한 구조성능 평가)

  • Yeong-Min Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.17-24
    • /
    • 2024
  • This paper assesses the structural performance of the Daeungbojeon Hall of Magoksa in Gongju, a representative multi-tiered roof traditional timber structure from the Joseon Dynasty, under vertical loads. Employing midas Gen, a structural analysis software, we developed a three-dimensional analysis model closely resembling the actual structure. Static analysis was employed to evaluate the safety and serviceability of the main vertical and horizontal members under vertical loads. While all members met the safety and serviceability criteria, structural weaknesses were identified in the Daelyang of the lower floor, particularly as a transitional beam, necessitating improvement. For the evaluation of dynamic behavior characteristics, eigenvalue analysis was conducted, assuming a relative rotational stiffness of 5% at the main joints. The natural period was determined to be 1.105 seconds, placing it within the category of a Hanok of similar size. The first mode manifested as a translational movement in the forward and backward direction of the building.

Multi-scale calibration of a line-style sand pluviator

  • Yifan Yang;Dirk A. de Lange;Huan Wang;Amin Askarinejad
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.431-441
    • /
    • 2024
  • A newly developed line-style sand pluviator has been calibrated to prepare repeatable sand specimens of specific statuses of compactness and homogeneity for laboratory tests. Sand is falling via a bottom slot of a fixed hopper, and by moving the sample container under the slot, the container is evenly filled with sand. The pluviator is designed with high flexibility: The falling height of sand, the hopper's opening width and the relative moving speed between the hopper and the sample box can be easily adjusted. By changing these control factors, sand specimens of a wide range of densities can be prepared. A series of specimen preparation was performed using the coarse Merwede River sand. Performance of the pluviator was systematically evaluated by exploring the alteration of achievable density, as well as checking the homogeneity and fabric of the prepared samples by CT scanning. It was found that the density of prepared coarse sand samples has monotonic correlations with none of the three control factors. Furthermore, CT scanning results suggested that the prepared samples exhibited excellent homogeneity in the horizontal direction but periodical alteration of density in the vertical direction. Based on these calibration test results, a preliminary hypothesis is proposed to describe the general working principles of this type of pluviators a priori, illustrating the mechanisms dominating the non-monotonic correlations between control factors and the relative density as well as the vertically prevalent heterogeneity of specimens. Accordingly, practical recommendations are made in a unified framework in order to lessen the load of similar calibration work.

Strength Evaluation of Pinus rigida Miller Wooden Retaining Wall Using Steel Bar (Steel Bar를 이용한 리기다소나무 목재옹벽의 내력 평가)

  • Song, Yo-Jin;Kim, Keon-Ho;Lee, Dong-Heub;Hwang, Won-Joung;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.318-325
    • /
    • 2011
  • Pitch pine (Pinus rigida Miller) retaining walls using Steel bar, of which the constructability and strength performance are good at the construction site, were manufactured and their strength properties were evaluated. The wooden retaining wall using Steel bar was piled into four stories stretcher and three stories header, which is 770 mm high, 2,890 mm length and 782 mm width. Retaining wall was made by inserting stretchers into Steel bar after making 18 mm diameter of holes at top and bottom stretcher, and then stacking other stretchers and headers which have a slit of 66 mm depth and 18 mm width. The strength properties of retaining walls were investigated by horizontal loading test, and the deformation of structure by image processing (AlCON 3D OPA-PRO system). Joint (Type-A) made with a single long stretcher and two headers, and joint (Type-B) made with two short stretchers connected with half lap joint and two headers were in the retaining wall using Steel bar. The compressive shear strength of joint was tested. Three replicates were used in each test. In horizontal loading test the strength was 1.6 times stronger in wooden retaining wall using Steel bar than in wooden retaining wall using square timber. The timber and joints were not fractured in the test. When testing compressive shear strength, the maximum load of type-A and Type-B was 130.13 kN and 130.6 kN, respectively. Constructability and strength were better in the wooden retaining wall using Steel bar than in wooden retaining wall using square timber.

Finite element analysis of the effects of a mouthguard on stress distribution of facial bone and skull under mandibular impacts (하악골 충격시 안면 두개골의 응력분산양상에 미치는 구강보호장치의 역할에 관한 유한요소법적 연구)

  • Noh, Kwan-Tae;Kim, Il-Han;Roh, Hyun-Sik;Kim, Ji-Yeon;Woo, Yi-Hyung;Kwon, Kung-Rock;Choi, Dae-Gyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the effects of a mouthguard on stress distribution under mandibular impact. Materials and methods: The FEM model of head consisted of skull, maxilla, mandible, articular disc, teeth, and mouthguard. The impact locations on mandible were gnathion, the center of inferior border, and the anterior edge of gonial angle. And the impact directions were vertical, oblique ($45^{\circ}$), and horizontal. The impact load was 800 N for 0.1 sec. Results: When vertical impact was applied, the similar stress and the distribution pattern was occurred without the relation of the mouthguard use (P>.05). The model with mouthguard was dispersed the stress to the teeth, the facial bone and the skull when the oblique ($45^{\circ}$) impacts were happened. However, the stress was centralized on the teeth in the model without mouthguard(P<.05). The model with mouthguard was dispersed the stress to the teeth, the facial bone and the skull when the horizontal impacts was occurred. However, the stress was centralized on the teeth without mouthguard (P<.05). For all impact loads, stress concentrated on maxillary anterior teeth in model without mouthguard, on the contrary, the stress was low in the model with mouthguard and distributed broadly on maxillary anterior teeth, facial bone, and skull. Conclusion: The mouthguard was less effective at shock absorbing when vertical impact was added. However, it was approved that mouthguard absorbed the shock regarded to the oblique ($45^{\circ}$) and horizontal impact by dispersing the shock to the broader areas and decreasing the stress.