• Title/Summary/Keyword: horizontal drain

Search Result 86, Processing Time 0.03 seconds

Application of Sand Mat Substitutel using Steel Slag (제강슬래그를 이용한 샌드매트 대체재료의 적용성 연구)

  • Park, Jong-Beom;Lee, Byung-Chan;Ju, Jae-Woo;Na, Hyun-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.1
    • /
    • pp.57-63
    • /
    • 2012
  • Steel slag has the nature to hydrate and expand when in contact with non-reacting CaO and water, and thus can be used only in limited scope for landfill disposal as well as for recycling as civil construction aggregates. In order to use such steel slags more efficiently, the applicability of steel slag as sand mat alternative material was reviewed. In general, sand mat is used in soft ground surface reinforcement method and horizontal drain method, and is installed simultaneously with soft ground vertical drain method. Therefore in this study steel slag designing method and application standard etc were examined to recycle steel slag as sand mat alternative material, and laboratory soil test and model test were done. Test results indicated that the designing method and application standard meet various environment and quality standards, meaning that steel slag can be utilized as sand mat alternative material, and analysis of slag mat bearing capacity also indicated that use of steel slag produces double or more bearing capacity compared with existing sand mat.

An Evaluation of Smeared Zone Due to Mandrel Penetration (맨드렐 관입에 기인하는 스미어 존의 평가)

  • 박영목
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.217-225
    • /
    • 2003
  • An experimental study was conducted to evaluate the smeared effect due to mandrel penetration into soft ground for a vertical drain installation. Laboratory tests were performed to investigate the formation of a smear zone, the variations of strength, and the consolidation characteristics in the disturbed zone using two types(CL at Yangsan site and OH at Pohang site) of soft clayey soils. The smear zone effect was evaluated focusing on mandrel shape, mandrel size, penetration speed, and ground condition. Based on laboratory test results, the diameter of the smear zone$(d_s)$ ranged from 3.08 and 3.92 times that of mandrel$(d_m)$. It was also found that the $(d_s/d_m)$ value of the circular shape of the mandrel is smaller than those of square and rectangular shapes. The value of $(d_s/d_m)$ decreased with larger mandrel size, lower penetration speed in the CL soil, and higher penetration speed in the OH soil. However, natural water content was minimally affected by $(d_s/d_m)$. Respectively, the coefficients of horizontal consolidation$(C_{hs})$ and horizontal Permeability$(K_s)$ of smear zone ranged from 0.81 to 0.87 times, and 0.73 to 0.83 times those of the undisturbed zone. Based on this study, the values of $C_{hs}, K_s$ and unconfined compressive strength$(q_{us})$ in the smear zone were the lowest at close vicinity of the mandrel and increased linearly with distance from the mandrel. Further, the $(q_{us})$ varied from 0.5 to 0.9 times that of the undisturbed zone strength.

The Numerical Study on Individual Vacuum Seepage Consolidation Method with Flexible Well Point (연성 Well Point를 적용한 개별진공 침투압밀공법에 관한 해석적 연구)

  • Kim, Byung-Il;Hong, Kang-Han;Kim, Young-Seon;Han, Sang-Jae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.1
    • /
    • pp.11-21
    • /
    • 2022
  • In this study, the individual vacuum seepage consolidation method, a new soft ground improvement method, was developed to supplement the conventional suction drain method (individual vacuum preloading method) and the geotechnical behavior was predicted through numerical analysis. If the individual vacuum seepage consolidation method applied, the effect of accelerating settlement and increasing the amount of settlement was high when the aquifer was located in the middle or at the bottom of the layer to the target improvement layer. It was found that the pumping amount in the aquifer does not affect the settlement behavior when it exceeds a certain level. Even vacuum pumping wells were installed in various locations, such as inside or outside of the embankment, the difference in settlement and horizontal displacement was insignificant. In addition, it was predicted that the settlement rate was the fastest and the horizontal displacement (inward) was large when both methods were carried out at the same time. Since this method can reach the target settlement amount very quickly, it was confirmed that it is possible to increase the spacing of vertical drain, thereby securing economic feasibility.

Consolidation Behavior of Vertical Drain in consideration of Smear Effect and Well Resistance (교란효과와 배수저항을 고려한 연직 배수재의 압밀 거동)

  • Kim, Tae Woo;Kang, Yea Mook;Lee, Dal Won
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.2
    • /
    • pp.225-234
    • /
    • 1998
  • This study was compared the degree of consolidation by Hyperbolic, Curve fitting, Asaoka's, Monden's methods using measured value with theoretical curve in consideration of smear effect and well resistance. The results of the study were summarized as follows ; 1. The degree of consolidation by Hyperbolic method was underestimated than the degree of consolidation by Curve fitting, Asaoka's, and Monden's methods. 2. Typical range of horizontal coefficient of consolidation was $C_h=(2{\sim}3)C_v$ in the case considering smear effect and well resistance, and $C_h=(0.5{\sim}2.5)C_v$ in the case disregarding smear effect and well resistance. 3. The degree of consolidation obtained by ground settlement monitoring was nearly same value when the coefficient of permeability of smear zone by back analysis was shown the half that of in-situ and the diameter of smear zone was shown double that of mendrel. 4. Increasing of diameter reduction ratio of drain, the time of consoildation was delayed. The affection of well resistance the case of small coefficient of permeability was much more than that in the case of large coefficient of permeability. It was recommended that design of diameter reduction of drain consider smear effect and well resistance.

  • PDF

Field instrumentation and settlement prediction of ground treated with straight-line vacuum preloading

  • Lei, Huayang;Feng, Shuangxi;Wang, Lei;Jin, Yawei
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.447-462
    • /
    • 2019
  • The vacuum preloading method has been used in many countries for ground improvement and land reclamation works. A sand cushion is required as a horizontal drainage channel for conventional vacuum preloading. In terms of the dredged-fill foundation soil, the treatment effect of the conventional vacuum preloading method is poor, particularly in Tianjin, China, where a shortage of sand exists. To solve this problem, straight-line vacuum preloading without sand is widely adopted in engineering practice to improve the foundation soil. Based on the engineering properties of dredged fill in Lingang City, Tianjin, this paper presents field instrumentation in five sections and analyzes the effect of a prefabricated vertical drain (PVD) layout and a vacuum pumping method on the soft soil ground treatment. Through the arrangement of pore water pressure gauges, settlement marks and vane shear tests, the settlement, pore water pressure and subsoil bearing capacity are analyzed to evaluate the effect of the ground treatment. This study demonstrates that straight-line vacuum preloading without sand can be suitable for areas with a high water content. Furthermore, the consolidation settlement and consolidation degree system is developed based on the grey model to predict the consolidation settlement and consolidation degree under vacuum preloading; the validity of the system is also verified.

The Characteristics of Consolidation and Permeability in Normally Consolidated Region Using a Remolded Decomposed Mudstone Soil (재성형된 이암풍화토를 이용한 정규압밀영역의 압밀 및 투수특성)

  • 김영수;김기영;이상웅
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.2
    • /
    • pp.61-70
    • /
    • 2000
  • When clay foundations of embankments are treated with vertical drain, essentially, the strain occurs to vertical direction but the water flow is radial. The initial horizontal permeability and its variation with the vertical compression are key parameters for the choice of the type of drains, their spacing, and affect to the cost of the project. In this study, CRS consolidation test is performed to investigate the anisotropic characteristics of decomposed mudstone soil and direct permeability test is performed on the same specimens. The results of testing show that Ch is larger than Cv. specially, the Cv - $\sigma$v relationship for a soil sample is viewed from three different curve segments corresponding to overconsolidated, transition and normally consolidated states. The anisotropic ratio, rk(kh/kv) is 2.19. Coefficient of permeability in normally consolidated state is related to its void ratio and permeability parameter n. C can be determined from a linear plot of log[k(1+e)] versus log e. The slope, n, of graphs is the same, whereas the vertical intercept, log C, seems to vary somewhat for anisotropic.

  • PDF

Experimental Study of Down-Scaled Model Slope on the Variation of the Ground Water Level of Drainable Soil Nailing (배수겸용 쏘일네일링의 지하수위 변화에 관한 축소모형사면 실험연구)

  • Kim, Young-Nam;Chae, Young-Su;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.1
    • /
    • pp.39-50
    • /
    • 2013
  • This study aims at investigating the behavior of the ground water level when installing upward soil nails that drain water as well. To do this, a series of down-scaled model tests were conducted. A model slope with weathered soils was prepared and then an artificial rain was scattered on the slope. The relative densities of soil specimen were 60%, 75%, and 90%, and the rainfall intensities 50mm/hr, 75mm/hr, 100mm/hr, and 125mm/hr, respectively. The experimental parameters, such as the ground water level, ratio of soil runoff, and failure mode of the slope were measured and analyzed. As the results, It may be concluded that the ground water level in the slope supported by drainable upward soil nails increases very gradually while the unsupported soil changes dramatically. In addition, the ground water level becomes constant and no failure occurs as time goes by. In case of the relative density of 75%, the runoff ratio seemed to increase up to about 8~15% after reinforcement.

An Experimental Study on the Evaluation of Smear Effect Considering In-situ Conditions (현장여건을 고려한 스미어 영향 평가에 관한 실험적 연구)

  • Park, Yeong-Mog
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.8
    • /
    • pp.85-94
    • /
    • 2012
  • Evaluation of the smear effect caused by mandrel penetration into soft ground for a vertical drain installation is very important to predict the consolidation time of soft ground improvement. 30 kinds of laboratory model tests considering in situ conditions were conducted to investigate the formation of a smear zone and the decrease of coefficient of permeability in the disturbed zone. Three types(C(clay):M(silt)=1:1, 0.5:0.5, and 0:1) of reconstituted samples were used for 3 dimensional smear zone test. An experimental study was performed focusing on length of mandrel penetration, mandrel shape and size, earth pressure, and ground condition(unit weight and grain size distributions). Laboratory test results show that the length of mandrel penetration is the most critical factor for the formation of smear zone. As a result, the ratio between diameter of the smear zone($d_s$) and that of mandrel($d_m$) at field using long mandrel becomes larger than conventional $d_s/d_m$. The ratio between $d_s$ and $d_m$ ranges from 1.89 and 2.48 with the sample at C:M=1:0. It was also found that the $d_s/d_m$ value with the round shape of the mandrel is smaller than that of diamond one. The value of $d_s/d_m$ decreased with larger mandrel size, lower unit weight, and higher earth pressure. However, higher silt content led to increase of $d_s/d_m$. The ratio between coefficient of horizontal permeability in the smear zone($k_{hs}$) and that of undisturbed zone($k_{ho}$) ranged from 0.70 to 0.85. The test results imply that factors and values affecting $k_{hs}/k_{ho}$ show similar tendency with $d_s/d_m$.

Development of Replacing Material for Sand Mat by Using Precious Slag Ball (풍쇄 슬래그를 이용한 샌드매트 대체재 개발에 관한 연구)

  • Shin, Eun-Chul;Lee, Woon-Hyun;Yoo, Jeong-Hoon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.2
    • /
    • pp.55-62
    • /
    • 2009
  • Recently, new development projects are being carried out with the soft ground located along the West coast and the South coast. As soft grounds have complex engineering properties that the load bearing capacity is low and high compressibility, it needs to solve this problems Prior to structures are constructed by the method of improvement of soft ground. The sand mat is usually being used for improvement of soft ground as a horizontal drain material and loading base. But, as the volume is enormous and an amount of demanded sand is increased, it is state of short in supply. This paper presents the feasibility study to use of precious slag ball instead of sand mat as the replacing material through the basic soil property tests, the medium of discharge capacity test and analysis of settlement character.

  • PDF

Evaluation of PBD as Horizontal Drains of Soilbag Retaining Wall (토낭 보강토 옹벽의 수평 배수재로서 PBD의 적용성 평가)

  • Shin, Eun-Chul;Lee, Myung-Shin;Kim, Sung-Hwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.2
    • /
    • pp.35-42
    • /
    • 2013
  • Recently, construction of reinforced earth structure using geosynthetics has been increased because it has advantages such as construction efficient, cost effectiveness and appearance aspect against existing gravity or cantilever retaining wall. However due to the climate change in Korea excessive inflow of ground water and surface water from heavy rainfall could affect the stability of reinforced retaining wall seriously. So the discharge capacity of drains should be evaluated by using experimental method in the design of reinforced earth wall. In this study, instead of concrete block used in most of the retaining wall, eco-friendly porous soilbag was used. This paper describes the test method and result of the laboratory testing for determination of discharge capacity utilizing PBDs.