• 제목/요약/키워드: horizontal accuracy

검색결과 586건 처리시간 0.028초

Machine learning application to seismic site classification prediction model using Horizontal-to-Vertical Spectral Ratio (HVSR) of strong-ground motions

  • Francis G. Phi;Bumsu Cho;Jungeun Kim;Hyungik Cho;Yun Wook Choo;Dookie Kim;Inhi Kim
    • Geomechanics and Engineering
    • /
    • 제37권6호
    • /
    • pp.539-554
    • /
    • 2024
  • This study explores development of prediction model for seismic site classification through the integration of machine learning techniques with horizontal-to-vertical spectral ratio (HVSR) methodologies. To improve model accuracy, the research employs outlier detection methods and, synthetic minority over-sampling technique (SMOTE) for data balance, and evaluates using seven machine learning models using seismic data from KiK-net. Notably, light gradient boosting method (LGBM), gradient boosting, and decision tree models exhibit improved performance when coupled with SMOTE, while Multiple linear regression (MLR) and Support vector machine (SVM) models show reduced efficacy. Outlier detection techniques significantly enhance accuracy, particularly for LGBM, gradient boosting, and voting boosting. The ensemble of LGBM with the isolation forest and SMOTE achieves the highest accuracy of 0.91, with LGBM and local outlier factor yielding the highest F1-score of 0.79. Consistently outperforming other models, LGBM proves most efficient for seismic site classification when supported by appropriate preprocessing procedures. These findings show the significance of outlier detection and data balancing for precise seismic soil classification prediction, offering insights and highlighting the potential of machine learning in optimizing site classification accuracy.

인상채득법이 임플랜트 주모형의 정확성에 미치는 영향 (EFFECT OF IMPRESS10N TECHNIQUE ON THE ACCURACY OF MASTER CAST FOR IMPLANT PROSTHESIS)

  • 김영오;양홍서;방몽숙;박상원;박하옥;이재봉
    • 대한치과보철학회지
    • /
    • 제44권1호
    • /
    • pp.63-72
    • /
    • 2006
  • Purpose: The purpose of this study was to compare the accuracy of master cast fabricated by using different impression methods at the different impression levels. Material and Method: The master model used in this study was resin block having low implant analogs. Impression method studied were 1) direct method on future level (Group FIX-D), 2) Indirect method on fixture level(Group FIX-I), 3) Modified indirect method on fixture level(Group FD(-M), 4) Direct method on abutment level(Group AB-D) and 5) Indirect method on abutment level(Group AB-I). Each of the five groups took 10 impressions. Fifty impressions were made for master cast by using Impregum $F^(R)$ impression material loaded on individual tray. Three dimensional measuring microscope was used to measure the inter-implant distance. Error rate of each inter-implant distance were calculated and evaluated. Results: The results were as follows. 1. Group FIX exhibited higher accuracy than group AB. 2 In group FIX, modified indirect method showed the highest accuracy, while indirect method showed the lowest accuracy. In group Ab, indirect method showed the higher accuracy than direct method. 3. Group FIX showed larger horizontal error than group AB. But, group AB showed the larger vertical error than group FIX. 4. Group Fix-M showed smallest vertical and horizontal error.

MULTI-OBJECTIVES FUZZY MODELS FOR DESIGNING 3D TRAJECTORY IN HORIZONTAL WELLS

  • Qian, Weiyi;Feng, Enmin
    • Journal of applied mathematics & informatics
    • /
    • 제15권1_2호
    • /
    • pp.265-275
    • /
    • 2004
  • In this paper, multi-objective models for designing 3D trajectory of horizontal wells are developed in a fuzzy environment. Here, the objectives of minimizing the length of the trajectory and the error of entry target point are fuzzy in nature. Some parameters, such as initial value, end value, lower bound and upper bound of the curvature radius, tool-face angle and the arc length of each curve section, are also assumed to be vague and imprecise. The impreciseness in the above objectives have been expressed by fuzzy linear membership functions and that in the above parameters by triangular fuzzy numbers. Models have been solved by the fuzzy non-linear programming method based on Zimmermann [1] and Lee and Li [2]. Models are applied to practical design of the horizontal wells. Numerical results illustrate the accuracy and efficiency of the fuzzy models.

Process Metamorphosis and On-Line FEM for Mathematical Modeling of Metal Rolling-Part II: Application

  • Zamanian, A.;Nam, S.Y.;Shin, T.J.;Hwang, S.M.
    • 소성∙가공
    • /
    • 제28권2호
    • /
    • pp.89-97
    • /
    • 2019
  • In this paper, we examine the application of a new concept - on-line FE model in various metal rolling processes. This technology allows for completion of process simulation within a tiny fraction of a second without losing the high level of prediction accuracy inherent to FEM. The procedure is systematically demonstrated through the design of actual on-line models for the prediction of the width spread in horizontal rolling of the slab using a dog bone profile and horizontal rolling of the strip with a strip profile. The validity and the prediction accuracy of the on-line FE models were analyzed and discussed.

치과 임플랜트 인상채득 방법에 따른 주모형의 정확성에 대한 비교 연구 (A COMPARATIVE STUDY ON THE ACCURACY OF MASTER CASTS BY IMPLANT IMPRESSION TECHNIQUES)

  • 류석민;조인호;임헌송;임주환
    • 대한치과보철학회지
    • /
    • 제40권1호
    • /
    • pp.18-29
    • /
    • 2002
  • As the inaccuracy which was made in implant impression prevented passive fit, it needed to solder the sectioned framework at several locations to correct the inaccuracy. Many clinicians have suggested impression techniques which could make passive fit between implant and superstructure. The purpose of this research was to measure and compare the accuracy of three methods of taking impression with the strain amplifier. The experimental groups were classified as follows : Group I : splinted the two parts with $Futar^{(R)}D$ Occlusion. Group II : splinted the two parts with $DuraLay^{(R)}$. Group III ; didn't splint the two parts. The results were as follows ; 1. The values of strain in the vertical and horizontal surfaces were increased in the order of group I, group II and group III. 2. Group 1 showed higher accuracy of the duplicated casts in the vortical and horizontal sur faces than group II and group III (p<0.05). 3. There were no significant differences in the accuracy of the duplicated casts between group II and group III. From the above results, it is considered that the splinting method of impression copings could make an influence on the accuracy of the master casts. To improve the accuracy of the master casts, splinting the squared impression copings with the additional silicone occlusion materials is recommendable.

Empirical Horizontal-Branch Loci of Galactic Globular Clusters in the Sloan Digital Sky Survey

  • 유혜인;안덕근;정철
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.147.1-147.1
    • /
    • 2012
  • We present empirical fiducial sequences for horizontal-branch (HB) stars in a set of bright Galactic globular clusters previously observed in SDSS (An et al. 2008). Mean loci of HB stars are derived on color-magnitude diagrams with multiple color indices (u - g, g - r, g - i, and g - z ) in order to identify foreground/background objects as well as cluster RR Lyrae variables. We compare our fiducial sequences to the model predictions from Yonsei-Yale isochrones and test the accuracy of the stellar evolution models.

  • PDF

Wavelet Pair Noise Removal for Increasing the Classification Accuracy of a Remotely Sensed Image

  • Jin, Hong-Sung;Yoo, Hee-Young;Eom, Joo-Young;Choi, II-Su;Han, Dong-Yeob
    • 대한원격탐사학회지
    • /
    • 제25권3호
    • /
    • pp.215-223
    • /
    • 2009
  • The noise removal as a preprocessing was tried with various kinds of wavelet pairs. Wavelet transform for 2D images generally uses the same wavelets as basis functions in horizontal and vertical directions. A method with different wavelets was tried for each direction separately, which gives more precise interpretation of the classification. Total 486 pairs of wavelets from nine basis functions were tried to remove image noises. The classification accuracies before and after the noise removal were compared. Although all kinds of wavelet pairs showed the increased accuracies in classification, there were best and worst wavelet pairs depending on the data sets. Wavelet pairs with low energy percentage of LL band showed the high classification accuracy. A pattern was found in the results that very similar vertical accuracy was distributed for each horizontal ones. Since Haar is the shortest length filter, Haar could be a predictor wavelet to find the good wavelet pairs.

경면가공용 고정밀 CNC 선반 개발 (Development of a high precision CNC lathe for mirror surface machining)

  • 박청홍;이후상;신영재;이군석;김춘배
    • 한국정밀공학회지
    • /
    • 제14권3호
    • /
    • pp.82-88
    • /
    • 1997
  • In this paper, the development of a precision CNC lathe prototype for mirror surface machining is presented. To obtain high precision machining accuracy, a hydrostatically supported precision spindle and a sliding guideway with turcite pad are adopted as the motion elements. The machining accuracy of the prototype machine, and the motional accuracy of its motion elements are tested and evaluated to confirm the validity of the application of these elements on the prototype. The hydrostatic spindle shows 0.09 .mu. m of rotational accuracy and the guideway shows about 0.8 .mu. m/170mm of horizontal straightness. The sur- face roughness of cupper and aluminium cylinder machined by the prototype machine with diamond tool are 0.07 .mu. m and 0.10 .mu. m Rmax respectively. From these results, it is verified that the prototype lathe is avail- able for high precision machining.

  • PDF

LiDAR 데이터를 이용한 지형지물의 위치정확도 분석 (Analysis of Position Accuracy of Topography using LiDAR Data)

  • 김용석;김성철
    • 한국콘텐츠학회논문지
    • /
    • 제8권3호
    • /
    • pp.270-278
    • /
    • 2008
  • 본 연구에서는 연구지역을 대상으로 LiDAR(Light Detection And Ranging) 데이터와 항공사진, 수치 지도를 이용하여 지형지물에 대한 위치정확도 분석을 실시하였다. 연구지역은 부산광역시 사하구 하단지역으로 선정하였으며, 첨단 측량기법인 항공 LiDAR 데이터와 축척 1:20,000의 항공사진을 이용하였다. 그리고 각각의 영상에 대하여 표정작업과 영상의 재배열 과정을 거쳐 최종 수치정사영상을 제작하였다. 제작된 영상을 이용하여 검사점을 선정하고, 선정된 검사점에 대한 정보를 추출하였으며, 스크린 디지타이징기법을 통한 수평위치 좌표를 추출하였다. 그리고 국토지리 정보원에서 공시한 축척 1:5,000의 수치지도를 이용하여 추출된 LiDAR 데이터 좌표와 항공사진의 좌표를 각각 비교.분석하였다. 수치지도를 기준으로 비교 분석한 결과 항공사진의 수평위치 정확도가 항공 LiDAR 측량 성과 보다 건물의 경우 x방향으로 24cm, y방향으로 26cm정도가 우수함을 알 수 있었다.