• Title/Summary/Keyword: hopping strategy

Search Result 9, Processing Time 0.032 seconds

Biomimetic Hopping Strategy for Robots

  • Sung, S.H.;Youm, Y.;Chung, W.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2654-2659
    • /
    • 2003
  • In this paper, we present biomimetic hopping strategy which is more human-like for legged robot through stiffness modulation. Stiffness value is calculated from the motion of body center of gravity. This method enable to reduce impact force on touch-down, adaption on ground stiffness change and height modulation. Simple selected models will be used to validate this method. For general model, singular perturbation is used for control and simulation using stiffness modulation is presented.

  • PDF

Performance Analysis of Multi-hop Wireless Networks under Different Hopping Strategies with Spatial Diversity

  • Han, Hu;Zhu, Hongbo;Zhu, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2548-2566
    • /
    • 2012
  • This paper derives two main end-to-end performance metrics, namely the spatial capacity density and the average end-to-end delay of the multi-hop wireless ad hoc networks with multi-antenna communications. Based on the closed-form expressions of these performance metrics, three hopping strategies, i.e., the closest neighbor, the furthest neighbor and the randomly selected neighbor hopping strategies have been investigated. This formulation provides insights into the relations among node density, diversity gains, number of hops and some other network design parameters which jointly determine network performances, and a method of choosing the best hopping strategy which can be formulated from a network design perspective.

A Novel Hitting Frequency Point Collision Avoidance Method for Wireless Dual-Channel Networks

  • Quan, Hou-De;Du, Chuan-Bao;Cui, Pei-Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.941-955
    • /
    • 2015
  • In dual-channel networks (DCNs), all frequency hopping (FH) sequences used for data channels are chosen from the original FH sequence used for the control channel by shifting different initial phases. As the number of data channels increases, the hitting frequency point problem becomes considerably serious because DCNs is non-orthogonal synchronization network and FH sequences are non-orthogonal. The increasing severity of the hitting frequency point problem consequently reduces the resource utilization efficiency. To solve this problem, we propose a novel hitting frequency point collision avoidance method, which consists of a sequence-selection strategy called sliding correlation (SC) and a collision avoidance strategy called keeping silent on hitting frequency point (KSHF). SC is used to find the optimal phase-shifted FH sequence with the minimum number of hitting frequency points for a new data channel. The hitting frequency points and their locations in this optimal sequence are also derived for KSHF according to SC strategy. In KSHF, the transceivers transmit or receive symbol information not on the hitting frequency point, but on the next frequency point during the next FH period. Analytical and simulation results demonstrate that unlike the traditional method, the proposed method can effectively reduce the number of hitting frequency points and improve the efficiency of the code resource utilization.

Performance Analysis Based On Log-Likelihood Ratio in Orthogonal Code Hopping Multiplexing Systems Using Multiple Antennas (다중 안테나를 사용한 직교 부호 도약 다중화 시스템에서 로그 우도비 기반 성능 분석)

  • Jung, Bang-Chul;Sung, Kil-Young;Shin, Won-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2534-2542
    • /
    • 2011
  • In this paper, we show that performance can be improved by using multiple antennas in the conventional orthogonal code hopping multiplexing (OCHM) scheme, which was proposed for accommodating a larger number of users with low channel activities than the number of orthogonal codewords used in code division multiple access (CDMA)-based communication systems through downlink statistical multiplexing. First, we introduce two different types of OCHM systems together with orthogonal codeword allocation strategies, and then derive their mathematical expression for log-likelihood ratio (LLR) values according to the two different schemes. Next, when a turbo encoder based on the LLR computation is used, we evaluate performance on the frame error rate (FER) for the aformentioned OCHM system. For comparison, we also show performance for the existing symbol mapping method using multiple antennas, which was used in 3GPP standards. As a result, it is shown that our OCHM system with multiple antennas based on the proposed orthogonal codeword allocation strategy leads to performance gain over the conventional system---energy required to satisfy a target FER is significantly reduced.

A Preliminary Impulsive Trajectory Design for (99942) Apophis Rendezvous Mission

  • Kim, Pureum;Park, Sang-Young;Cho, Sungki;Jo, Jung Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.105-117
    • /
    • 2021
  • In this study, a preliminary trajectory design is conducted for a conceptual spacecraft mission to a near-Earth asteroid (NEA) (99942) Apophis, which is expected to pass by Earth merely 32,000 km from the Earth's surface in 2029. This close approach event will provide us with a unique opportunity to study changes induced in asteroids during close approaches to massive bodies, as well as the general properties of NEAs. The conceptual mission is set to arrive at and rendezvous with Apophis in 2028 for an advanced study of the asteroid, and some near-optimal (in terms of fuel consumption) trajectories under this mission architecture are to be investigated using a global optimization algorithm called monotonic basin hopping. It is shown that trajectories with a single swing-by from Venus or Earth, or even simpler ones without gravity assist, are the most feasible. In addition, launch opportunities in 2029 yield another possible strategy of leaving Earth around the 2029 close approach event and simply following the asteroid thereafter, which may be an alternative fuel-efficient option that can be adopted if advanced studies of Apophis are not required.

Integrated System for Autonomous Proximity Operations and Docking

  • Lee, Dae-Ro;Pernicka, Henry
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.43-56
    • /
    • 2011
  • An integrated system composed of guidance, navigation and control (GNC) system for autonomous proximity operations and the docking of two spacecraft was developed. The position maneuvers were determined through the integration of the state-dependent Riccati equation formulated from nonlinear relative motion dynamics and relative navigation using rendezvous laser vision (Lidar) and a vision sensor system. In the vision sensor system, a switch between sensors was made along the approach phase in order to provide continuously effective navigation. As an extension of the rendezvous laser vision system, an automated terminal guidance scheme based on the Clohessy-Wiltshire state transition matrix was used to formulate a "V-bar hopping approach" reference trajectory. A proximity operations strategy was then adapted from the approach strategy used with the automated transfer vehicle. The attitude maneuvers, determined from a linear quadratic Gaussian-type control including quaternion based attitude estimation using star trackers or a vision sensor system, provided precise attitude control and robustness under uncertainties in the moments of inertia and external disturbances. These functions were then integrated into an autonomous GNC system that can perform proximity operations and meet all conditions for successful docking. A six-degree of freedom simulation was used to demonstrate the effectiveness of the integrated system.

A General Method for Error Probability Computation of UWB Systems for Indoor Multiuser Communications

  • Durisi, Giuseppe;Tarable, Alberto;Romme, Jac;Benedetto, Sergio
    • Journal of Communications and Networks
    • /
    • v.5 no.4
    • /
    • pp.354-364
    • /
    • 2003
  • A general method for the evaluation of the symbol error probability (SER) of ultra wideband (UWB) systems with various kind of modulation schemes (N-PAM, M-PPM, Bi-Orthogonal), in presence of multipath channel, multiuser and strong narrowband interference, is presented. This method is shown to be able to include all the principal multiaccess techniques proposed so far for UWB, time hopping (TH), direct sequence (DS) and optical orthogonal codes (OOC). A comparison between the performance of these multiple access and modulation techniques is given, for both ideal Rake receiver and minimum mean square error (MMSE) equalizer. It is shown that for all the analyzed multiple access schemes, a Rake receiver exhibits a high error floor in presence of narrowband interference (NBI) and that the value of the error floor is in-fluenced by the spectral characteristics of the spreading code. As expected, an MMSE receiver offers better performance, representing a promising candidate for UWB systems. When the multiuser interference is dominant, all multiple access techniques exhibit similar performance under high-load conditions. If the number of users is significantly lower than the spreading factor, then DS outperforms both TH and OOC. Finally 2PPM is shown to offer better performance than the other modulation schemes in presence of multiuser interference; increasing the spreading factor is proposed as a more effective strategy for SER reduction than the use of time diversity.

Study for trial project of Intelligent Train Control System (MBS) at Korail Bundang Line (분당선 지능형열차제어시스템 (MBS) 시범설비구축 사업에 관한 고찰)

  • Kim, Yun-Bae;Yoon, Ho-Sok
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.339-342
    • /
    • 2008
  • In this paper, the lessons and learns are introduced from the result of the trial project which is the first CBTC(Communication Based Train Control System) at Korail Bundang Line. This project has started end of 2002 and finished recently by Samsung SDS. The main purpose of this project was that new technology was seek for next generation of railway signal control system adapted in Korea. In 2002, there was no any revenue service system using Radio Frequency CBTC in the world at that time. Just a few trial project was on going in USA and EU. In well developed cities, the metro system have been built and old enough therefore they have to be considering re-signalling their existing system with advanced system for increasing availabilities of line usage and safety. This Bundang Line Trial Project was the first Korean CBTC project for above reasons. Most sub systems have been developed using local technology such as Electronics Controlled Interlocking System and Track Circuit Systems etc. Specially, in this project the RF-Communication devices are developed by local technology using DSSS(Direct Sequency Spread Spectrum) instead of FHSS(Frequency Hopping Spread Spectrum). This project has lasted for more than five years originally planned for three years because it was only accessible only night time in the main line from Ori to Suseo about 20km long. Each night only 2 and half hours are available to use the main line. Now the trial project has been done successfully with meet the customer's requirement, therefore the upgrade the mainline of Bundang line and another extension area up to Wangsipli to make revenue service using this new technology. This paper shows this result of the trial project and the strategy of upgrade and extension project as well.

  • PDF

Performance analysis and saturation bound research of cyclic-quorum multichannel MAC protocol based on Markov chain model

  • Hu, Xing;Ma, Linhua;Huang, Shaocheng;Huang, Jinke;Sun, Kangning;Huang, Tianyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3862-3888
    • /
    • 2017
  • In high diversity node situation, single-channel MAC protocols suffer from many collisions. To solve this problem, the research of multichannel MAC protocol has become a hotspot. And the cyclic quorum-based multichannel (CQM) MAC protocol outperformed others owing to its high frequency utilization. In addition, it can avoid the bottleneck that others suffered from and can be easily realized with only one transceiver. To obtain the accurate performance of CQM MAC protocol, a Markov chain model, which combines the channel hopping strategy of CQM protocol and IEEE 802.11 distributed coordination function (DCF), is proposed. The metrics (throughput and average packet transmission delay) are calculated in performance analysis, with respect to node number, packet rate, channel slot length and channel number. The results of numerical analysis show that the optimal performance of CQM protocol can be obtained in saturation bound situation. And then we obtain the saturation bound of CQM system by bird swarm algorithm (BSA). Finally, the Markov chain model and saturation bound are verified by Qualnet platform. And the simulation results show that the analytic and simulation results match very well.