• Title/Summary/Keyword: honeycomb structure

Search Result 227, Processing Time 0.036 seconds

An Evaluation of Structural Test and Analysis for Composites Vehicle Structures of Automatic Guideway Transit (자동무인경전철 복합재 차체 구조물의 구조 시험 및 해석적 평가)

  • Ko, Hee-Young;Shin, Kwang-Bok;Cho, Se-Hyun;Kim, Dae-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1103-1108
    • /
    • 2009
  • This paper describes the results of structural test and finite element analysis for rubber wheel-type Automatic Guideway Transit(AGT) made of aluminum honeycomb sandwich composites with WR580/NF4000 glass-fabric epoxy laminate face sheets. The static tests of vehicle structure were conducted according to JIS E7l05. These static tests have been done under vertical load, compressive load and 3-point support load. The structural integrity of AGT vehicle structure was evaluated by displacement, stress obtained from LVDT and strain gauges, and natural frequency. And finite element analysis using Ansys v11.0 was done to compare with the results of static test. The result showed that the results of structural integrity for static test were in an good agreement with these of finite element analysis.

  • PDF

Boron Nit ride Nanotube Synthesis and Applications (보론 나이트라이드 나노튜브 합성 및 응용기술)

  • Cho, Hyun Jin;Kim, Jun Hee;Kim, Myung Jong
    • Vacuum Magazine
    • /
    • v.3 no.3
    • /
    • pp.19-23
    • /
    • 2016
  • BNNTs (Boron nitride nanotubes) is an analogue of CNTs (Carbon Nanotubes) in terms of lattice structure. In BNNTs, a boron atom forms sp2 hybridized bonding with three nitrogen atoms, and so does a nitrogen with three boron atoms in the honeycomb structure. Its innovative properties, such as high thermal conductivity, neutron shielding capability, superb oxidation resistance at $900^{\circ}C$, excellent chemical resistance, and superior mechanical properties are advantageous for a wide range of applications, especially for electric device packages, neutron shielding, protective coating materials, and functional composites. In this paper, boron nitride nanotube synthesis, properties and application are reviewed.

A Study on Manufacturing Technology and Evaluation of the Structural Integrity of a Sandwich Composite Train Roof Structure (샌드위치 복합재 철도차량 루프구조물의 구조 안전성 평가 및 제작기술 연구)

  • Shin Kwang-Bok;;;Lee Sang-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.43-49
    • /
    • 2006
  • We have evaluated the structural integrity of a sandwich composite train roof structure that can be a lightweight, cost saving solution to large structural components for rail vehicles in design stages. The sandwich composite train roof structure was 11.45 meters long and 1.76 meters wide. The finite element analysis was used to calculate the stresses, deflections and natural frequencies of the sandwich composite train roof against the weight of air-conditioned system. The 3D sandwich finite element model was introduced to examine the structural behavior of the hollow aluminum extrusion frames joined to both sides of the sandwich composite train roof. The results shown that the structural performance of the sandwich composite train roof under loading conditions specified is satisfaction and the use of aluminum reinforced frame and aluminum honeycomb core is beneficial with regard to weight saving and structural performance in comparison with steel reinforced frame and polyurethane foam core. Also, we have manufactured prototype of sandwich composite train roof structure on the basis of analysis results.

Modeling of the Elasto-plastic Deformation Behavior of Two-Dimensional Anisotropic Foam under Compressive Loads using Voronoi Cells (보로노이 셀을 이용한 2 원 비등방성 폼 구조 모델링 및 탄소성 압축변형 해석)

  • Han, Won-Hee;Choi, Byoung-Ho;Kim, Il-Hyun;Lee, Jeong-Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.785-792
    • /
    • 2012
  • Foam structure is usually hard to model due to the complexity of the geometry of cells. So, many simplified models to represent complicated foam structures have been proposed, but most of them are not actually describe the random feature of the cell structure well. So, in this study, two dimensional isotropic and anisotropic closed cell structures of the foam were modeled using the concept of Voronoi cells. The elasto-plastic deformation behavior under compressive loads was investigated by finitie element analysis, and the results were compared with ideal honeycomb structure. In addition, the effect of anisotropy of Voronoi cell structures of the foam on Young's modulus and yield stress under compressive loads was studied.

Compressive Behavior for Smart Skin of Sandwich Structure (스마트 스킨 샌드위치 시편의 압축거동 연구)

  • Kim, Young-Sung;Kim, Yong-Bum;Park, Hoon-Cheol;Yoon, Kwang-Joon;Lee, Jeo-Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.56-64
    • /
    • 2002
  • In this work, a smart skin of multi-layer structure is designed and manufactured. Through the compression test, the characteristic of smart skin behavior was examined. We have predicted stress of each layer and the first failed layer of the smart skin structure by using MSC/NASTRAN. The finite element model was verified by comparing measured data from the compression test and result from the geometrically linear/non-linear analysis. The finite element model was used for obtaining design data from the parametric study. It was confirmed that shear moduli of honeycomb core affect the buckling load of smart skin where shear deformation was considerable.

Pore Structure Modification and Characterization of Porous Cordierite with Chemical Vapor Infiltration (CVI) SiC Whisker (화학증착 탄화규소 휘스커에 의한 다공성 코디어라이트의 기공구조 개질 및 특성평가)

  • Kim, Ik-Whan;Kim, Jun-Gyu;Lee, Hwan-Sup;Choi, Doo-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.2
    • /
    • pp.132-137
    • /
    • 2008
  • The main purpose of this study is enhancing the filtering efficiency, performance and durability of filter by growing SiC whiskers on cordierite honeycomb substrate. The experiment was performed by Chemical Vapor Infiltration (CVI) in order to control pore morphology of substrate. Increasing the mechanical strength of porous substrate is one of important issues. The formation of "networking structure" in the pore of porous substrate increased mechanical strength. The high pressure gas injection to the specimen showed that a little of whiskers were separated from substrate but additional film coating enhanced the stability of whisker at high pressure gas injection. Particle trap test was performed. More nano-particle was trapped by whisker growth at the pore of substrate. Therefore it is expected that the porous cordierite which deposited the SiC whisker will be the promising material for the application as filter trapping the nano-particles.

Conductivity Change of PEDOT:PSS Film according to the Surface Structuring

  • Yu, Jung-Hoon;Nam, Sang-Hoon;Lee, Jin-Su;Hwang, Ki-Hwan;Seo, Hyeon-Jin;Ju, Dong-Woo;Jeon, So-Hyoun;Yun, Sang-Ho;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.248.1-248.1
    • /
    • 2014
  • We present results from an experimental study of conductivity change of poly (3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) film according to the surface structuring. We demonstrate that the patterned structure was enhanced with approximately five times conductivity in comparison with non structure of PEDOT:PSS film. In order to patterning, we have fabricated polystyrene (PS) colloidal monolayer as a template with sphere diameter of 780nm and 1.8um. Structure has honeycomb shape and it provide shorter path way to flowing of electron. Pattern size was controlled by PS diameter and varied by Transformer Coupled Plasma (TCP) etching system. Conductivity was converted from sheet resistance which measured by 4-point prove. Film thickness was derived using Field Emission Scanning Electron Microscopy (FE-SEM) images.

  • PDF

Eight new species of two genera Dysidea and Euryspongia (Demospongiae: Dictyoceratida: Dysideidae) from Korea

  • Kim, Young A;Lee, Kyung Jin;Sim, Chung Ja
    • Journal of Species Research
    • /
    • v.9 no.1
    • /
    • pp.56-67
    • /
    • 2020
  • Eight new species of two genera Dysidea and Euryspongia (Demospongiae: Dictyoceratida: Dysideidae) are described from Gageodo, Ulleungdo, Geomundo, and Jejudo Islands, Korea. Four new species of the genus Dysidea are differentiated by the fibre structure, cored detritus, and fibre arrangement. Dysidea mureungensis n. sp. is characterized by the honeycomb shape of surface and no distinction between primary and secondary fibres. Dysidea glavea n. sp. differs by large sands cored in fibres and that the membrane easily separates from fibres. Dysidea geomunensis n. sp. has fibres that are thinner than those of D. glavea n. sp.. Dysidea corallina n. sp. is characterized by folded fan shape and the arrangement of secondary fibres. Four new species of the genus Euryspongia are differentiated by the fibre structure, cored detritus, shape of sponge, and fibre arrangement. Euryspongia radicula n. sp. is very different from other species by having regularly arranged fibres. Euryspongia spina n. sp. has a fence-like skeletal structure. Bridged type secondary fibres are arranged near the surface and web types are at the base of fibres. Euryspongia flabellum n. sp. has a very unique wide, thin leaf-like shape. String-like primary fibres of E. linea n. sp. are very unique and cored with large sized sands.

Thermal and Mineralogical Characterization of Ca-montmorillonite from Gampo Area: Morphology by Electron Microscope Study (감포지역(甘浦地域) Ca-몬모릴로나이트의 광물학적(鑛物學的) 및 열적특성(熱的特性) : 전자현미경(電子顯微鏡)에 의한 형태적(形態的) 연구)

  • Moon, Hi-Soo;Choi, Sun Kyung
    • Journal of the Mineralogical Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.117-130
    • /
    • 1988
  • The morphology of the Ca-montmorillonites from the Gampo area was investigated by the use of scanning and transmission electron microscope. These bulk samples show an irregular or rugged surface with well developed cavities and relict outline of original ash material at low magnification by SEM, indicating that montmorillonites are derived from volcanogenic material. Two different types of morphology of montmorillonites by SEM were observed which appear to depend very much on the space available for crystal growth. One is honeycomb structure montmorillonite growing in an open space. The other is the closely packed aggregates of intergrown montmorillonite showing platy particles where available space for the growth is limited. Several different habits of montmorillonite within a single sample can be observed by TEM. The dominant habit observed is the irregularly shaped and foliated aggregates and the platy shaped particles. In general, platy shaped particles are relatively abundant in the samples from Yongdongri compared with those from Jugjeonri area.

  • PDF

Effects of Glass Texturing Structure on the Module Efficiency of Heterojunction Silicon Solar Cells

  • Park, Hyeongsik;Lee, Yoo Jeong;Shin, Myunghun;Lee, Youn-Jung;Lee, Jaesung;Park, Changkyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.6 no.4
    • /
    • pp.102-108
    • /
    • 2018
  • A glass-texturing technique was developed for photovoltaic (PV) module cover glass; periodic honeycomb textures were formed by using a conventional lithography technique and diluted hydrogen fluoride etching solutions. The etching conditions were optimized for three different types of textured structures. In contrast to a flat glass substrate, the textured glasses were structured with etched average surface angles of $31-57^{\circ}$, and large aspect ratios of 0.17-0.47; by using a finite difference time-domain simulation, we show that these textured surfaces increase the amount of scattered light and reduce reflectance on the glass surface. In addition, the optical transmittance of the textured glass was markedly improved by up to 95% for wavelengths ranging from 400 to 1100 nm. Furthermore, applying the textured structures to the cover glass of the PV module with heterojunction with intrinsic thin-layer crystalline silicon solar cells resulted in improvements in the short-circuit current density and module efficiency from 39 to $40.2mA/cm^2$ and from 21.65% to 22.41%, respectively. Considering these results, the proposed method has the potential to further strengthen the industrial and technical competitiveness of crystalline silicon solar cells.