• Title/Summary/Keyword: honeycomb sandwich structure

Search Result 102, Processing Time 0.029 seconds

Analytical and Experimental Studies on the Natural Frequency of a Composite Train Carbody (복합재 철도차량 차체 고유진동수에 대한 해석 및 시험적 연구)

  • Jeong Jong-Cheol;Cho Sea-Hyun;Seo Seong-Il;Kim Jung-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.473-480
    • /
    • 2006
  • This paper explains analytical and experimental studies to evaluate the natural frequency of a composite carbody of Korean tilting train. The composite carbody with length of 23m was manufactured as a sandwich structure composed of 40mm-thick aluminium honeycomb core and 5mm-thick woven fabric carbon/epoxy face. From the finite element analysis, the 1st bending and 1st twisting natural frequency of the composite carbody were 11.67Hz and 14.4Hz, respectively. In order to verify the analytical results, the natural frequency measuring tests were performed. The measured 1st bending and twisting natural frequencies of the composite carbody were 10.25Hz and 11.0Hz, respectively. Both of these results satisfied the design requirement.

A Study on Fatigue Test Procedure of a Composite Train Carbody (복합재 철도차량 차체의 피로내구시험 철차에 대한 연구)

  • Kim, Jung-Seok;Han, Seong-Ho;Seo, Seung-Il;Jeong, Jong-Cheol;Cho, Sea-Hyun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.234-238
    • /
    • 2005
  • This paper explains the fatigue test procedure of a composite train carbody. The composite carbody with length of 23m was manufactured as a sandwich structure composed of a 40mm-thick aluminium honeycomb core and 5mm-thick woven fabric carbon/epoxy face. In order to evaluate fatigue strength of the composite carbody, the carbody will be excited by two 50-ton capacity hydraulic actuators. The excitation frequency will be measured by natural frequency evaluation test under full weight condition. The test The fatigue test is to be conducted For $2{\times}10^6$cycles. During the fatigue test, the nondestructive tests using X-ray and liquid penetrant will be performed. From crack detection tests, the location and Fatigue crack progress will be investigated.

  • PDF

Structural Characteristics of a Hybrid Composite Carbody of Korean Tilting Train by Weight Load (한국형 틸팅열차용 복합재 차체의 하중적재에 따른 구조적 특성고찰)

  • Kim Jung-Seok;Jeong Jong Cheol;Han Jeong-Woo;Lee Sang-Jin;Kim Seung-Cheol;Seo Sung-Il
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.3 s.34
    • /
    • pp.251-256
    • /
    • 2006
  • This paper explains manufacturing process, analysis and experimental studies on a hybrid composite carbody of Korean tilting train. The composite carbody with length of 23m was manufactured as a sandwich structure composed of a aluminium honeycomb core and woven fabric carbon/epoxy faces. In order to evaluate deformational behavior of the composite carbody, the static load test under vertical load has been conducted. From the test, the vertical deflection an겨 cross sectional deformation of the carbody were analysed and measured. The maximum deflection along the side sill was 9.25mm in the experiment and 8.28mm in the analysis. The maximum cross sectional deformation was measured 5.42mm at carbody center in lateral direction and 4.06mm at roof center in vertical direction.

Model Updating of an Equipment Panel with Embedded Heat Pipes (히트 파이프가 내장된 통신위성용 탑재체 패널의 해석모델 개선)

  • 양군호;최성봉;김홍배;문상무
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.248-257
    • /
    • 1999
  • This paper presents the model updating of an equipment panel by using modal test and sensitivity analysis. The equipment panel is one of the major structures of communication satelite, on which broadcasting and communication equipments are mounted. For high rigidity and light weight, the panel was designed as an aluminum honeycomb sandwich panel. In addition, heat pipes were embedded in the panel for thermal control. It is essential to improve the finite element model of a spacecraft structure by using modal test in order to verify that the satellite is designed and fabricated with adequate margin under launch environment. In this paper, Young's modulus of aluminumfacesheet was selected as a modified parameter in the sensitivity analysis. The effect of boundary conditions on model improvement was also investigated.

  • PDF

Compressive Behavior for Smart Skin of Sandwich Structure (스마트 스킨 샌드위치 시편의 압축거동 연구)

  • Kim, Young-Sung;Kim, Yong-Bum;Park, Hoon-Cheol;Yoon, Kwang-Joon;Lee, Jeo-Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.56-64
    • /
    • 2002
  • In this work, a smart skin of multi-layer structure is designed and manufactured. Through the compression test, the characteristic of smart skin behavior was examined. We have predicted stress of each layer and the first failed layer of the smart skin structure by using MSC/NASTRAN. The finite element model was verified by comparing measured data from the compression test and result from the geometrically linear/non-linear analysis. The finite element model was used for obtaining design data from the parametric study. It was confirmed that shear moduli of honeycomb core affect the buckling load of smart skin where shear deformation was considerable.

Study of Effective Stiffness and Effective Strength for a Pinwheel Model combined with Diamond Truss-Wall Corrugation (P-TDC) (다이아몬드 트러스 벽면으로 구성된 P-TDC 모델의 강성 및 강도 연구)

  • Choi, Jeong-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.3
    • /
    • pp.109-124
    • /
    • 2016
  • The objective of this paper is to find the density, stiffness, and strength of truss-wall diamond corrugation model combined with pinwheel truss inside space. The truss-wall diamond corrugation (TDC) model is defined as a unit cell coming from solid-wall diamond corrugation (SDC) model. Pinwheel truss-wall diamond corrugation (P-TDC) model is made by TDC connected with pinwheel structure inside of the space. Derived ideal solutions of P-TDC is based on truss-wall and pinwheel truss model at first. And then it is compared with Gibson-Ashby's ideal solution. To validate the ideal solutions of the P-TDC, ABAQUS software is used to predict the density, strength, and stiffness, and then each of them are compared to the ideal solution of Gibson-Ashby with a log-log scale. Applied material property is stainless steel 304 because of having cost effectiveness. Applied parameters for P-TDC are 1 thru 5 mm diameter within fixed opening width as 4mm. In conclusion, the relative Young's modulus and relative yield strength of the P-TDC unit model is reasonable matched to the ideal expectations of the Gibson-Ashby's theory. In nearby future, P-TDC model is hoped to be applied to make sandwich core structure by advanced technologies such as 3D printing skills.

Design and Analysis of Composite Reflector of High Stable Deployable Antenna for Satellite (위성용 전개형 고안정 반사판 안테나 복합재 주반사판 설계 및 해석)

  • Dong-Geon Kim;Kyung-Rae Koo;Hyun-Guk Kim;Sung-Chan Song;Seong-Cheol Kwon;Jae-Hyuk Lim;Young-Bae Kim
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.230-240
    • /
    • 2023
  • The deployable reflector antenna consists of 24 unit main reflectors, and is mounted on a launch vehicle in a folded state. This satellite reaches the operating orbit and the antenna of satellite is deployed, and performs a mission. The deployable reflector antenna has the advantage of reduce the storage volume of payload of launch vehicle, allowing large space structures to be mounted in the limited storage space of the launch vehicle. In this paper, structural analysis was performed on the main reflector constituting the deployable reflector antenna, and through this, the initial conceptual design was performed. Lightweight composite main reflector was designed by applying a carbon fiber composite and honeycomb core. The laminate pattern and shape were selected as design variables and a design that satisfies the operation conditions was derived. Then, the performance of the lightweight composite reflector antenna was analyzed by performing detailed structural analysis on modal analysis, quasi-static, thermal gradient, and dynamic behavior.

Study on the Performance of Infrared Thermal Imaging Light Source for Detection of Impact Defects in CFRP Composite Sandwich Panels

  • Park, Hee-Sang;Choi, Man-Yong;Kwon, Koo-Ahn;Park, Jeong-Hak;Choi, Won-Jae;Jung, Hyun-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.2
    • /
    • pp.91-98
    • /
    • 2017
  • Recently, composite materials have been mainly used in the main wings, ailerons, and fuselages of aircraft and rotor blades of helicopters. Composite materials used in rapid moving structures are subject to impact by hail, lightning, and bird strike. Such an impact can destroy fiber tissues in the composite materials as well as deform the composite materials, resulting in various problems such as weakened rigidity of the composite structure and penetration of water into tiny cracks. In this study, experiments were conducted using a 2 kW halogen lamp which is most frequently used as a light source, a 2 kW near-infrared lamp, which is used for heating to a high temperature, and a 6 kW xenon flash lamp which emits a large amount of energy for a moment. CFRP composite sandwich panels using Nomex honeycomb core were used as the specimens. Experiments were carried out under impact damages of 1, 4 and 8 J. It was found that the detection of defects was fast when the xenon flash lamp was used. The detection of damaged regions was excellent when the halogen lamp was used. Furthermore, the near-infrared lamp is an effective technology for showing the surface of a test object.

Structural Safety Evaluation of An Autoclave Cured Train Carbody with Length of 23m (오토클레이브 성형된 길이 23m 복합재 철도차량 차체의 구조적 특성평가)

  • Kim, Jung-Seok;Lee, Sang-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1551-1559
    • /
    • 2005
  • This paper explains manufacturing process and experimental studies on a composite carbody of Korean tilting train. The composite carbody with length of 23m was manufactured as a sandwich structure composed of a 40mm-thick aluminium honeycomb core and 5mm-thick woven fabric carbon/epoxy face. In order to evaluate structural behavior and safety of the composite carbody, the static load tests such as vertical load, end compressive load, torsional load and 3-point support load tests have been conducted. These tests were performed under Japanese Industrial Standard (JIS) 17105 standard. From the tests, maximum deflection was 12.3mm and equivalent bending stiffness of the carbody was 0.81$\times$10$^{14}$ kgf$\cdot$mm$^{2}$ Maximum stress of the composite body was lower than 12.2$\%$ of strength of the carbon/epoxy. Therefore, the composite body satisfied the Japanese Industrial Standard.

Durability Evaluation of a Composite Carbody for Korean Tilting Train under Repeated Loadings (반복하중을 받는 틸팅열차용 복합재 차체구조의 내구성 평가)

  • Jeong, Jong-Cheol;Seo, Sung-Il;Kim, Jung-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.1 s.38
    • /
    • pp.39-44
    • /
    • 2007
  • This rafer explains a durability test of a large train car body made of carbon/epoxy composite material. The composite car body with the length of 23m was manufactured as a sandwich structure composed of an aluminum honeycomb core and CF1263 woven fabric carbon/epoxy faces. In order to evaluate durability of the composite car body, it was excited by two 500kN capacity hydraulic actuators installed underneath the body bolster. The natural frequency of the composite car body under full weight condition was found to be 4.33Hz. Based on this result, the excitation frequency and displacement of 5Hz and ${\pm}1.0mm$, respectively, were used as inputs for the durability test. The test was conducted for $2{\times}10^6$ cycles. During the test, the nondestructive tests using X-ray radiography and dye penetration method was performed to determine the presence of the cracks. Upon completion of the test, no cracks were found.