• Title/Summary/Keyword: honeycomb sandwich composites

Search Result 47, Processing Time 0.018 seconds

Characteristics of Strength and Deformation of Aluminum Honeycomb Sandwich Composites Under Bending Loading (굽힘 하중을 받는 알루미늄 하니컴 샌드위치 복합재료의 강도 및 변형 특성)

  • Kim Hyoung-Gu;Choi Nak-Sam
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.61-64
    • /
    • 2004
  • The strength characteristics as well as deformation behaviors of honeycomb sandwich composite (HSC) structures were investigated under bending in consideration of various failure modes such as skin layer yielding, interface-delamination, core shear deformation and local buckling. Deformation behaviors of honeycomb sandwich plates were observed with various types of aluminum honeycomb core and skin layer. Their finite-element analysis simulation with a real model of honeycomb core was performed to analyze stresses and deformation behaviors of honeycomb sandwich plates. Its results were very comparable to the experimental ones. Consequently, the increase in skin layer thickness and in cell size of honeycomb core had dominant effects on the strength and deformation behaviors of honeycomb sandwich composites.

  • PDF

Deformation and Fracture Analysis of Honeycomb Sandwich Composites under Bending Loading (굽힘 하중을 받는 하니컴 샌드위치 복합재료의 변형 및 파괴 해석)

  • Kim Hyoung-Gu;Choi Nak-Sam
    • Composites Research
    • /
    • v.18 no.1
    • /
    • pp.30-37
    • /
    • 2005
  • The bending strength characteristics and local deformation behaviors of honeycomb sandwich composites were investigated using three-point bending experiment and finite element simulation with a real model of honeycomb core. Two kinds of cell sizes of honeycomb core, two kinds of skin layer thicknesses, perfect bonding specimen as well as initial delamination specimen were used for analysis of stress and deformation behaviors of honeycomb sandwich beams. Various failure modes such as skin layer yielding, interfacial delamination, core shear deformation and local buckling were considered. Its simulation results were very comparable to the experimental ones. Consequently, cell size of honeycomb core and skin layer thickness had dominant effects on the bending strength and deformation behaviors of honeycomb sandwich composites. Specimens of large core cell size and thin skin layer showed that bending strength decreased by $30\~68\%$.

Hemp fibre woven fabrics / polypropylene based honeycomb sandwich structure for aerospace applications

  • Antony, Sheedev;Cherouat, Abel;Montay, Guillaume
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.2
    • /
    • pp.87-103
    • /
    • 2019
  • Recently, natural fibre composites are widely used in aerospace industries due to their good specific mechanical properties, better acoustic properties, light weight, readily availability, biodegradability, recyclability, etc. In this study, the hemp fibre woven fabrics / polypropylene based honeycomb sandwich structure were proposed for aerospace applications. Firstly, the hemp fibre woven fabrics based honeycomb sandwich structures were manufactured and experimental mechanical tests (compressive and flexural) were performed in the laboratory. Numerical simulation was also performed and analysed to validate the proposed methodology. Different complex shaped aircraft part CAD models were created and numerical analysis was carried out in order to have a better understanding about the complex honeycomb sandwich structures.

Fabrication and Its Evaluation of the Light-weight Composite Pallet Plank for an Assembly Line of LCD/PDP by using Honeycomb Sandwich Panel (하니컴 샌드위치 Panel을 이용한 LCD/PDP 생산 공정용 경량 고기능성 복합 신소재 파렛트 제조 및 그 특성 평가)

  • Kim, Yun-Hae;Choi, Byung-Geun;Son, Jin-Ho;Jo, Young-Dae;Eum, Soo-Hyun;Woo, Byung-Hun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.304-310
    • /
    • 2006
  • A typical honeycomb sandwich panel consists of two thin, high-strength facings bonded to a thick, light-weight core. Each component by itself is relatively weak and flexible, but when it combined in a sandwich panel they produce a structure that is stiff, strong, and lightweight. To prove the suitability the honeycomb sandwich structure with prepreg, the mechanical properties of the skin materials and honeycomb sandwich structure were evaluated with the static strength tests. Accordingly, the honeycomb sandwich structure made by autoclave process is available for a panel on LCD/PDP assembly line.

Elastic Analysis of Honeycomb Materials Considering Cell Size and Cell Wall Thickness (셀 크기와 셀벽 두께를 고려한 하니컴 재료의 탄성 해석)

  • 김형구;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.157-160
    • /
    • 2003
  • Honeycomb sandwich composite structures have been widely used in aircraft and military industry because of light weight and high stiffness. Accurate mechanical properties of honeycomb materials are needed for analysis of sandwich composites. In this study, theoretical formula for elastic modulus of honeycomb materials was established considering bending and axial deformations of their walls. Finite-element analysis results were compared with theoretical ones of the longitudinal and transverse moduli of honeycomb materials. Consequently, the mechanical properties of honeycomb materials could be analytically predicted.

  • PDF

Simulation Analysis on the Compression Property of Sandwich Composite (샌드위치 복합재료의 압축 특성에 관한 시뮬레이션 해석)

  • Bang, Seung-Ok;Kook, Jeong-Han;Kim, Sei-Hwan;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.478-484
    • /
    • 2012
  • In this study, compression analyses of sandwich composites with porous core were carried out. Finite element models of aluminum foam and honeycomb core sandwich composite material were applied solid element. In the case of aluminum foam core, valid equivalence damage model was applied. In the in-plane compression analysis, the maximum load of aluminum foam core sandwich was similar with that of aluminum honeycomb core sandwich. But in case of aluminum honeycomb core sandwich, the load support region becomes longer in comparison with aluminum foam core sandwich. In the out-plane compression analysis, compression maximum load of aluminum honeycomb core sandwich was higher than that of aluminum foam core sandwich. Through these Simulation analysis, obtains the behavior of sandwich composites.

Characteristics of Sandwich Panels and Indoor Composite Materials (샌드위치 패널 및 내장재 특성 연구)

  • 허완수;이상원;김장엽;이종호
    • Composites Research
    • /
    • v.14 no.6
    • /
    • pp.1-8
    • /
    • 2001
  • In this paper, the sandwich panel composites consisting of core material and face sheet were studied to evaluate the mechanical properties, noise level and fire resistance including flammability, smoke, and toxicity. Four types of sandwich panel were prepared using various kinds of panel and honeycomb materials. It was observed that Al honeycomb/Al skin composite materials had the excellent flatwise tensile strength and edgewise compressive strength compared with other types of composites. The flatwise compressive strength and flexural strength of Nomex honeycomb/Al skin composite were higher than those of other composites. PMI form/Al skin composite showed the higher core shear strength and facing bending strength. From the experimental results of flame resistance tests, it can be said that the phenol based skin composite has the excellent flame retardation properties, which are similar to those of the commercial skin composites.

  • PDF

Study on Compression Tests of Aluminum Foam and Honeycomb Sandwich Composites (알루미늄 폼 및 허니컴 샌드위치 복합재료의 압축실험에 관한 연구)

  • Bang, Seung-Ok;Kim, Key-Sun;Kim, Sei-Hwan;Song, Soo-Gu;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.3802-3807
    • /
    • 2011
  • In this study, in-plane and out-plane compression tests of aluminum foam and honeycomb sandwich composites were carried out. Through these tests, the relationships of load-displacements were analyzed and the compression characteristics were compared with each other. The specimens were compressed with the speed of 1mm/min by using the universal testing machine. Experimental procedures were taken with photograph by the camera and load cell data were stored into computer. Test results showed that buckling was occurred at the aluminum foam core and honeycomb core according to the increase of load. In the in-plane compression test, the maximum load of aluminum foam specimen was similar with that of honeycomb sandwich. The property of honeycomb was better than that of the foam in consideration of specific gravity. In the out-plane compression test, compression maximum load of aluminum honeycomb sandwich composite was higher than that of aluminum foam sandwich composite.

Prediction of Mechanical Properties of Honeycomb Core Materials and Analysis of Interlaminar Stress of Honeycomb Sandwich Composite Plate (하니컴코어 재료의 기계적 물성 예측과 하니컴 샌드위치 복합재료 평판의 층간응력 해석)

  • 김형구;최낙삼
    • Composites Research
    • /
    • v.17 no.1
    • /
    • pp.29-37
    • /
    • 2004
  • Honeycomb sandwich composite(HSC) structures have been widely used in aircraft and military industry owing to their light weight and high stiffness. Mechanical properties of honeycomb core materials are needed for accurate analysis of the sandwich composites. In this study. theoretical formula for effective elastic modulus and Poisson's ratio of honeycomb core materials was established using an energy method considering the bending, axial and shear deformations of honeycomb core walls. Finite-element analysis results obtained by using commercial FEA code, ABAQUS 6.3 were comparable to the theoretical ones. In addition, we performed tensile test of HSC plates and analyzed deformation behaviors and interlaminar stresses through its FEA simulation. An increased shear stress along the interface between surface and honeycomb core layers was shown to be the main reason for interfacial delamination in HSC plate under tensile loading.

A Study on Flexural Behaviors of Sandwich Composites with Facesheets of Unequal Thickness (면재 두께가 다른 샌드위치 복합재의 굽힘 거동 연구)

  • Shin, Kwang-Bok;Lee, Jae-Youl;Ryu, Bong-Jo;Lee, Sang-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.2 s.39
    • /
    • pp.201-210
    • /
    • 2007
  • Sandwich composites made of glass fabric epoxy facesheets with aluminum honeycomb core or balsa core is considered for the structural design of bodyshell of a Korean Low Floor Bus. Initially, in order to select the optimal facesheet and core materials in design stage, the flexural response of a sandwich composite is a critical importance. In this study, theoretical formula which could easily and quickly evaluate and obtain the flexural responses such as deflection and flexural stiffness of a sandwich composite subjected to external load was established. This theory could calculate the flexural responses of sandwich composites with narrow as well as wide width and with facesheets of unequal thickness, and also distinguish between the bending and shear effects of deflection. Finite element analysis using ANSYS V10.0 was used to offer the best elements for real sandwich composites, and flexural test according to ASTM C393 was conducted to compare with the results of theoretical formula and finite element analysis. The results show that the flexural responses of sandwich composites using proposed theoretical formula is in good agreement with those of experiment and finite element method.