• Title/Summary/Keyword: honeycomb sandwich composite

Search Result 115, Processing Time 0.025 seconds

Torsion Rigidity of Composite Material Cmbody for Low Floor Bus (한국형 저상버스 복합소재 차체에 대한 비틀림 강성 평가)

  • Leem, Song-Gyu;Kim, Yeon-Su;Mok, Jai-Kyun;Jang, Se-Ky;Cho, Se-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.548-553
    • /
    • 2008
  • Low Floor buses have no steps to get on or get off the main cabin to provide the old and the handicapped with easy access. The car body for the low floor bus was designed to consider Korean physical standard, passenger capacity (standee, seated, handicapped), arrangement of vehicle components, and bus law or regulations. It was designed as an one body, without any reinforcement armature, which has light-weight sandwich constructions with glass epoxy skins, aluminum honeycomb cores and inner-frames. In this paper, torsion rigidity of the designed car body was evaluated and compared with that of a car body with reinforcement armatures in the cabin. Finite element method verified that the designed car body without reinforcement armatures could satisfy requirements of torsion rigidity.

  • PDF

Bending Fatigue Characteristics of Surface-Antenna-Structure (복합재료 표면안테나 구조의 굽힘 피로특성 연구)

  • 김동현;황운봉;박현철;박위상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1647-1650
    • /
    • 2003
  • The Objective of this work was to design Surface Antenna Structure (SAS) and investigate fatigue behavior of SAS that was asymmetric sandwich structure. This term, SAS, indicates that structural surface becomes antenna. Constituent materials were selected considering electrical properties, dielectric constant and tangent loss as well as mechanical properties. For the antenna performance, SSFIP elements inserted into structural layers were designed for satellite communication at a resonant frequency of 12.5 GHz and final demonstration article was 16${\times}$8 array antenna. From electrical measurements, it was shown that antenna performances were in good agreement with design requirements. In cyclic 4-point bending, flexure behavior was investigated by static and fatigue test. Fatigue lift curve of SAS was obtained. The fatigue load was determined experimentally at a 0.75(1.875kN) load level. SAS concept is the first serious attempt at integration for both antenna and composite engineers and promises innovative future communication technology.

  • PDF

Study on Low Temperature Environmental Characteristics of Sandwich Core Made with 3D Printer (3D 프린터로 제작한 샌드위치 코어의 저온 환경 특성 연구)

  • Ahn, Ju-Hun;Choi, Ju-Hwan;Hong, Seung-Lae;Lee, Chang-Yull
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.4
    • /
    • pp.18-25
    • /
    • 2019
  • Studies on the fabrication of UAV by using 3D printer have been actively carried out. However, research on structural load characteristics in low temperature environment is insufficient. In this study, a composite sandwich structure with ordinary orbs structure was proposed, and the load characteristics for temperature condition changes were analyzed. The ordinary orbs and honeycomb structures were fabricated by using a FDM type 3D printer. The bending load test was carried out at room temperature and low temperature condition. The low temperature condition was classified into four cases. Bending load tests were performed in a low temperature chamber to maintain the required temperature conditions. As a result of the test, it was confirmed that the proposed ordinary orbs structure had better load characteristics at low temperatures than the existing honeycomb structure.

FEM Analysis of Smart Skin Structure Specimen (스마트 스킨 구조물 시편의 유한요소 해석)

  • 전지훈;황운봉
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.59-65
    • /
    • 2003
  • FEM analysis of the smart skin structure, and application of the sandwich structures investigated. The honeycomb manufactures only provide stillness of thickness direction and transverse shear modulus. Although these are dominant mechanical properties. the other mechanical properties are needed in FEM analysis. Hence, this work shows procedures of obtaining those mechanical properties. Honeycomb material was assumed to be ar, isotropic material and properties are estimated by its dominant honeycomb properties. The other honeycomb properties are then obtained by mechanical properties of Nomex. Buckling test and three point bending test were simulated by ABAQUS. Both the shell and solid element models were used. The results were compared with experimental results and analytical approaches. They showed good agreements. This study shows a guideline of FEM analysis of smart skin structure using commercial a FEM package.

A Study on the Crashworthiness Evaluation and Performance Improvement of Tilting Train Carbody Structure made of Sandwich Composites (틸팅열차의 샌드위치 복합재 차체 구조물에 대한 충돌안전도 평가 및 향상방안 연구)

  • Jang, Hyung-Jin;Shin, Kwang-Bok;Han, Sung-Ho
    • Composites Research
    • /
    • v.24 no.5
    • /
    • pp.9-16
    • /
    • 2011
  • This paper describes the crashworthiness evaluation and performance improvement of tilting train made of sandwich composites. The applied sandwich composite of carbody structure was composed of aluminum honeycomb core and glass/epoxy & carbon/epoxy laminate composite facesheet. Crashworthiness analysis of tilting train was carried out using explicit finite element analysis code LS-DYNA 3D. The 3D finite element model and 1D equivalent model were applied to save the finite element modeling and calculation time for crash analysis. The crash conditions of tilting train were conducted according to four crash scenarios of the Korean railway safety law. It found that the crashworthiness analysis results were satisfied with the performance requirements except the crash scenario-2. In order to meet the crashworthiness requirements for crash scenario-2, the stiffness reinforcement for the laminate composite cover and metal frames of cabmask structure was proposed. Consequentially, it has satisfied the requirement for crash scenario-2.

Design and Verification of a Novel Composite Sandwich Joint Structure (새로운 개념의 복합재 샌드위치 체결부 구조의 설계와 검증)

  • Kwak, Byeong-Su;Ju, Hyun-woo;Kim, Hong-Il;Dong, Seung-Jin;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.384-392
    • /
    • 2017
  • Sandwich panels with three different joint configurations were tested to design a novel sandwich joint structure that can effectively support both the tensile and compressive loads. The sandwich core was mainly aluminum flex honeycomb but the PMI foam core was limitedly applied to the ramp area which is transition part from sandwich to solid laminate. The face of sandwich panel was made of carbon fiber composite. For configuration 1, the composite flange and the sandwich panel were cocured. For configurations 2 and 3, an aluminum flange was fastened to the solid laminate by HI-LOK pins and adhesive. The average compressive failure loads of configurations 1, 2, and 3 were 295, 226, and 291 kN, respectively, and the average tensile failure loads were 47.3 (delamination), 83.7 (bolt failure), and 291 (fixture damage) kN, respectively. Considering the compressive failure loads only, both the configurations 1 and 3 showed good performance. However, the configuration 1 showed delamination in the corner of the composite flange under tension at early stage of loading. Therefore, it was confirmed that the structure that can effectively support tension and compressive loads at the same time is the configuration 3 which used a mechanically fastened aluminum flange so that there is no risk of delamination at the corner.

A Study on Fatigue Test Procedure of a Composite Train Carbody (복합재 철도차량 차체의 피로내구시험 철차에 대한 연구)

  • Kim, Jung-Seok;Han, Seong-Ho;Seo, Seung-Il;Jeong, Jong-Cheol;Cho, Sea-Hyun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.234-238
    • /
    • 2005
  • This paper explains the fatigue test procedure of a composite train carbody. The composite carbody with length of 23m was manufactured as a sandwich structure composed of a 40mm-thick aluminium honeycomb core and 5mm-thick woven fabric carbon/epoxy face. In order to evaluate fatigue strength of the composite carbody, the carbody will be excited by two 50-ton capacity hydraulic actuators. The excitation frequency will be measured by natural frequency evaluation test under full weight condition. The test The fatigue test is to be conducted For $2{\times}10^6$cycles. During the fatigue test, the nondestructive tests using X-ray and liquid penetrant will be performed. From crack detection tests, the location and Fatigue crack progress will be investigated.

  • PDF

Analysis of low-velocity impact on composite sandwich panels using an assumed strain solid element (가정변형률 솔리드 요소를 이용한 복합재 샌드위치 평판의 저속충격 해석)

  • Park, Jung;Park, Hoon-Cheol;Yoon, Kwang-Joon;Goo, Nam-Seo;Lee, Jae-Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.44-50
    • /
    • 2002
  • Low-velocity impact on composite sandwich panel has been investigated. Contact force is computed from a proposed modified Hertzian contact law. The Hertzian contact law is constructed by adjusting numerical value of the exponent and reducing the through-the- thickness elastic constant of honeycomb core. The equivalent transverse elastic constant is calculated from the rule of mixture. Nonlinear equation to calculate the contact force is solved by the Newton-Raphson method and time integration is done by the Newmark-beta method. A finite element program for the low-velocity impact analysis is coded by implementing these techniques and an 18-node assumed strain solid element. Behaviors of composite sandwich panels subjected to low-velocity impact are analyzed for various cases with different geometry and lay-ups. It has been found that the present code with the proposed contact law can predict measured contact forces and contact times for most cases within reasonable error bounds.

Analytical and Experimental Studies on the Natural Frequency of a Composite Train Carbody (복합재 철도차량 차체 고유진동수에 대한 해석 및 시험적 연구)

  • Jeong Jong-Cheol;Cho Sea-Hyun;Seo Seong-Il;Kim Jung-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.473-480
    • /
    • 2006
  • This paper explains analytical and experimental studies to evaluate the natural frequency of a composite carbody of Korean tilting train. The composite carbody with length of 23m was manufactured as a sandwich structure composed of 40mm-thick aluminium honeycomb core and 5mm-thick woven fabric carbon/epoxy face. From the finite element analysis, the 1st bending and 1st twisting natural frequency of the composite carbody were 11.67Hz and 14.4Hz, respectively. In order to verify the analytical results, the natural frequency measuring tests were performed. The measured 1st bending and twisting natural frequencies of the composite carbody were 10.25Hz and 11.0Hz, respectively. Both of these results satisfied the design requirement.

Temperature distribution behaviors of GFRP honeycomb hollow section sandwich panels

  • Kong, B.;Cai, C.S.;Pan, F.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.623-641
    • /
    • 2013
  • The fiber-reinforced polymer (FRP) composite panel, with the benefits of light weight, high strength, good corrosion resistance, and long-term durability, has been considered as one of the prosperous alternatives for structural retrofits and replacements. Although with these advantages, a further application of FRPs in bridge engineering may be restricted, and that is partly due to some unsatisfied thermal performance observed in recent studies. In this regard, Kansas Department of Transportation (DOT) conducted a field monitoring program on a bridge with glass FRP (GFRP) honeycomb hollow section sandwich panels. The temperatures of the panel surfaces and ambient air were measured from December 2002 to July 2004. In this paper, the temperature distributing behaviors of the panels are firstly demonstrated and discussed based on the field measurements. Then, a numerical modeling procedure of temperature fields is developed and verified. This model is capable of predicting the temperature distributions with the local environmental conditions and material's thermal properties. Finally, a parametric study is employed to examine the sensitivities of several temperature influencing factors, including the hollow section configurations, environmental conditions, and material properties.