• Title/Summary/Keyword: homotopy set

Search Result 23, Processing Time 0.018 seconds

DERIVED LIMITS AND GROUPS OF PURE EXTENSIONS

  • LEE, H.J.;KIM, S.J.;HAN, Y.H.;LEE, W.H.;LEE, D.W.
    • Honam Mathematical Journal
    • /
    • v.21 no.1
    • /
    • pp.157-169
    • /
    • 1999
  • For a k-connected inverse system $({\scr{X}},\;*)=((X_{\lambda},\;*),p_{{\lambda}{{\lambda}}^{\prime}},\;{\Lambda})$ of pointed topological spaces and pointed preserving weak fibrations, inducting epimorphic chain maps, over a directed set, we show that the homotopy group ${\pi}_k(lim{\scr{X}},\;*)$ of the inverse limit is isomorphic to the integral homology group $$H_k(lim{\scr{X}};\mathbb{Z})$. Using the result of S. $Marde{\check{s}}i{\acute{c}}$, we prove that the group of pure extension $Pext(colimH^n({\scr{X}},\;A)$ is isomorphic to the group of extension $Ext({\Delta}({\lambda}),\;Hom(H^n({\scr{X}}),\;A))$.

  • PDF

DIGITAL COVERING THEORY AND ITS APPLICATIONS

  • Kim, In-Soo;Han, Sang-Eon
    • Honam Mathematical Journal
    • /
    • v.30 no.4
    • /
    • pp.589-602
    • /
    • 2008
  • As a survey-type article, the paper reviews various digital topological utilities from digital covering theory. Digital covering theory has strongly contributed to the calculation of the digital k-fundamental group of both a digital space(a set with k-adjacency or digital k-graph) and a digital product. Furthermore, it has been used in classifying digital spaces, establishing almost Van Kampen theory which is the digital version of van Kampen theorem in algebrate topology, developing the generalized universal covering property, and so forth. Finally, we remark on the digital k-surface structure of a Cartesian product of two simple closed $k_i$-curves in ${\mathbf{Z}}^n$, $i{\in}{1,2}$.

COCYCLIC MORPHISM SETS DEPENDING ON A MORPHISM IN THE CATEGORY OF PAIRS

  • Kim, Jiyean;Lee, Kee Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1589-1600
    • /
    • 2019
  • In this paper, we apply the notion of cocyclic maps to the category of pairs proposed by Hilton and obtain more general concepts. We discuss the concept of cocyclic morphisms with respect to a morphism and find that it is a dual concept of cyclic morphisms with respect to a morphism and a generalization of the notion of cocyclic morphisms with respect to a map. Moreover, we investigate its basic properties including the preservation of cocyclic properties by morphisms and find conditions for which the set of all homotopy classes of cocyclic morphisms with respect to a morphism will have a group structure.