• Title/Summary/Keyword: homotopy equivalence.

Search Result 26, Processing Time 0.021 seconds

SELF-HOMOTOPY EQUIVALENCES OF MOORE SPACES DEPENDING ON COHOMOTOPY GROUPS

  • Choi, Ho Won;Lee, Kee Young;Oh, Hyung Seok
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1371-1385
    • /
    • 2019
  • Given a topological space X and a non-negative integer k, ${\varepsilon}^{\sharp}_k(X)$ is the set of all self-homotopy equivalences of X that do not change maps from X to an t-sphere $S^t$ homotopically by the composition for all $t{\geq}k$. This set is a subgroup of the self-homotopy equivalence group ${\varepsilon}(X)$. We find certain homotopic tools for computations of ${\varepsilon}^{\sharp}_k(X)$. Using these results, we determine ${\varepsilon}^{\sharp}_k(M(G,n))$ for $k{\geq}n$, where M(G, n) is a Moore space type of (G, n) for a finitely generated abelian group G.

THE EQUIVALENCE OF TWO ALGEBARAIC K-THEORIES

  • Song, Yongjin
    • Korean Journal of Mathematics
    • /
    • v.5 no.2
    • /
    • pp.107-112
    • /
    • 1997
  • For a ring R with 1, the higher K-theory of Quillen is defined by the higher homotopy groups of the plus construction of the general linear group of R. On the other hand, the Volodin K-theory is defined by the higher homotopy groups of the Volodin space. In this paper we show that these two K-theories are equivalent. We show that the Volodin space is a homotopy fiber of the acyclic map from BGL(R) to its plus construction.

  • PDF

STRONG k-DEFORMATION RETRACT AND ITS APPLICATIONS

  • Han, Sang-Eon
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.6
    • /
    • pp.1479-1503
    • /
    • 2007
  • In this paper, we study a strong k-deformation retract derived from a relative k-homotopy and investigate its properties in relation to both a k-homotopic thinning and the k-fundamental group. Moreover, we show that the k-fundamental group of a wedge product of closed k-curves not k-contractible is a free group by the use of some properties of both a strong k-deformation retract and a digital covering. Finally, we write an algorithm for calculating the k-fundamental group of a dosed k-curve by the use of a k-homotopic thinning.

Homotopy of projections in C^*-algebras

  • Kim, Sang-Og
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.1
    • /
    • pp.75-78
    • /
    • 1997
  • We show that if a simple $C^*$-algebra A satisfies certain $K_1$-group conditions, then two unitarily equivalent projections are homotopic. Also we show that the equivalence of projections determined by a dimension function is a homotopy.

  • PDF

SELF-HOMOTOPY EQUIVALENCES RELATED TO COHOMOTOPY GROUPS

  • Choi, Ho Won;Lee, Kee Young;Oh, Hyung Seok
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.399-415
    • /
    • 2017
  • Given a topological space X and a non-negative integer k, we study the self-homotopy equivalences of X that do not change maps from X to n-sphere $S^n$ homotopically by the composition for all $n{\geq}k$. We denote by ${\varepsilon}^{\sharp}_k(X)$ the set of all homotopy classes of such self-homotopy equivalences. This set is a dual concept of ${\varepsilon}^{\sharp}_k(X)$, which has been studied by several authors. We prove that if X is a finite CW complex, there are at most a finite number of distinguishing homotopy classes ${\varepsilon}^{\sharp}_k(X)$, whereas ${\varepsilon}^{\sharp}_k(X)$ may not be finite. Moreover, we obtain concrete computations of ${\varepsilon}^{\sharp}_k(X)$ to show that the cardinal of ${\varepsilon}^{\sharp}_k(X)$ is finite when X is either a Moore space or co-Moore space by using the self-closeness numbers.

SELF-PAIR HOMOTOPY EQUIVALENCES RELATED TO CO-VARIANT FUNCTORS

  • Ho Won Choi;Kee Young Lee;Hye Seon Shin
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.409-425
    • /
    • 2024
  • The category of pairs is the category whose objects are maps between two based spaces and morphisms are pair-maps from one object to another object. To study the self-homotopy equivalences in the category of pairs, we use covariant functors from the category of pairs to the group category whose objects are groups and morphisms are group homomorphisms. We introduce specific subgroups of groups of self-pair homotopy equivalences and put these groups together into certain sequences. We investigate properties of these sequences, in particular, the exactness and split. We apply the results to two special functors, homotopy and homology functors and determine the suggested several subgroups of groups of self-pair homotopy equivalences.

A PROSET STRUCTURE INDUCED FROM HOMOTOPY CLASSES OF MAPS AND A CLASSIFICATION OF FIBRATIONS

  • Yamaguchi, Toshihiro;Yokura, Shoji
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.991-1004
    • /
    • 2019
  • Firstly we consider preorders (not necessarily partial orders) on a canonical quotient of the set of the homotopy classes of continuous maps between two spaces induced by a certain equivalence relation ${\sim}_{{\varepsilon}R}$. Secondly we apply it to a classification of orientable fibrations over Y with fibre X. In the classification theorem of J. Stasheff [22] and G. Allaud [3], they use the set $[Y,\;Baut_1X]$ of homotopy classes of continuous maps from Y to $Baut_1X$, which is the classifying space for fibrations with fibre X due to A. Dold and R. Lashof [11]. In this paper we give a classification of fibrations using a preordered set (abbr., proset) structure induced by $[Y,\;Baut_1X]_{{\varepsilon}R}:=[Y,\;Baut_1X]/{\sim}_{{\varepsilon}R}$.

COMMUTATIVE MONOID OF THE SET OF k-ISOMORPHISM CLASSES OF SIMPLE CLOSED k-SURFACES IN Z3

  • Han, Sang-Eon
    • Honam Mathematical Journal
    • /
    • v.32 no.1
    • /
    • pp.141-155
    • /
    • 2010
  • In this paper we prove that with some hypothesis the set of k-isomorphism classes of simple closed k-surfaces in ${\mathbf{Z}}^3$ forms a commutative monoid with an operation derived from a digital connected sum, k ${\in}$ {18,26}. Besides, with some hypothesis the set of k-homotopy equivalence classes of closed k-surfaces in ${\mathbf{Z}}^3$ is also proved to be a commutative monoid with the above operation, k ${\in}$ {18,26}.

CANCELLATION OF LOCAL SPHERES WITH RESPECT TO WEDGE AND CARTESIAN PRODUCT

  • Hans Scheerer;Lee, Hee-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.15-23
    • /
    • 1996
  • Let C be a category of (pointed) spaces. For $X, Y \in C$ we denote the wedge (or one point union) by $X \vee Y$ and the cartesian product by $X \times Y$. Let $Z \in C$; we say that Z cancels with respect to wedge (resp. cartesian product) and C, if for all $X, Y \in C$ the existence of a homotopy equivalence $X \vee Z \to Y \vee Z$ implies the existence of a homotopy equivalence $X \to Y$ (resp. for cartesian product). If this does not hold, we say that there is a non-cancellation phenomenon involving Z (and C).

  • PDF

FACTORIZATION OF CERTAIN SELF-MAPS OF PRODUCT SPACES

  • Jun, Sangwoo;Lee, Kee Young
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1231-1242
    • /
    • 2017
  • In this paper, we show that, under some conditions, self-maps of product spaces can be represented by the composition of two specific self-maps if their induced homomorphism on the i-th homotopy group is an automorphism for all i in some section of positive integers. As an application, we obtain closeness numbers of several product spaces.