Cloud computing is an attractive solution that can provide low cost storage and powerful processing capabilities for government agencies or enterprises of small and medium size. Yet the confidentiality of information should be considered by any organization migrating to cloud, which makes the research on relational database system based on encryption schemes to preserve the integrity and confidentiality of data in cloud be an interesting subject. So far there have been various solutions for realizing SQL queries on encrypted data in cloud without decryption in advance, where generally homomorphic encryption algorithm is applied to support queries with aggregate functions or numerical computation. But the existing homomorphic encryption algorithms cannot encrypt floating-point numbers. So in this paper, we present a mechanism to enable the trusted party to encrypt the floating-points by homomorphic encryption algorithm and partial trusty server to perform summation on their ciphertexts without revealing the data itself. In the first step, we encode floating-point numbers to hide the decimal points and the positive or negative signs. Then, the codes of floating-point numbers are encrypted by homomorphic encryption algorithm and stored as sequences in cloud. Finally, we use the data structure of DoubleListTree to implement the aggregate function of SUM and later do some extra processes to accomplish the summation.
To improve the security of gene information and the accuracy of matching, this paper designs a homomorphic encryption algorithm for gene matching based on cloud computing environment. Firstly, the gene sequences of cloud files entered by users are collected, which are converted into binary code by binary function, so that the encrypted text is obviously different from the original text. After that, the binary code of genes in the database is compared with the generated code to complete gene matching. Experimental analysis indicates that when the number of fragments in a 1 GB gene file is 65, the minimum encryption time of the algorithm is 80.13 ms. Aside from that, the gene matching time and energy consumption of this algorithm are the least, which are 85.69 ms and 237.89 J, respectively.
완전동형암호는 암호화된 데이터에 대한 대수적 연산을 지원하며, 최근에는 최대값 함수 등의 비대수적 연산도 근사하는 방법이 연구되고 있다. 그러나 아직 4개 이상의 숫자에 대한 정밀한 맥스 풀링 근사 연구는 이루어지지 않았다. 본 연구에서는 최대값 함수 근사 다항식의 합성을 활용하여 정밀한 맥스 풀링 근사 기법을 제안하였으며, 이를 이론적으로 분석하여 높은 정밀도를 증명하였다. 실험 결과, 제안하는 근사 맥스 풀링은 1ms 이내의 작은 분할 실행 시간과 이론적 분석과 일치하는 높은 정밀도를 보여주었다.
본 연구에서는 동형 암호를 활용한 프라이버시 보장 암호화 API 오용 탐지 프레임워크를 제안한다. 제안하는 프레임워크는 암호화된 상태에서 데이터의 기밀성을 유지하면서도 효과적으로 암호화 API 오용을 탐지할 수 있도록 설계되었다. 먼저, CNN(Convolutional Neural Network) 기반의 탐지 모델을 사용하고, 암호화된 환경에서도 높은 정확도를 유지하기 위해 모델 구조를 최적화하였다. 구체적으로, 효율적인 동형 암호 연산을 위해 깊이별 합성곱층을 활용하고, 비선형성을 확보하기 위해 세제곱 활성화 함수를 도입하여 암호화된 데이터에서도 오용 탐지를 효과적으로 수행할 수 있도록 하였다. 실험 결과, 제안된 모델은 F1 스코어 0.978의 높은 탐지 성능을 보였으며, 동형 암호를 적용한 모델의 전체 실행 시간은 11.20초로, 실시간 처리에 가까운 계산 효율성을 보여주었다. 이러한 결과는 동형 암호를 활용한 환경에서도 우수한 보안성과 정확도를 제공할 수 있음을 확인시켜준다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권3호
/
pp.1510-1532
/
2017
In smart grid, privacy implications to individuals and their families are an important issue because of the fine-grained usage data collection. Wireless communications are utilized by many utility companies to obtain information. Network coding is exploited in smart grids, to enhance network performance in terms of throughput, delay, robustness, and energy consumption. However, random linear network coding introduces a new challenge for privacy preserving due to the encoding of data and updating of coefficients in forwarder nodes. We propose a distributed privacy preserving scheme for random linear network coding in smart grid that considers the converged flows character of the smart grid and exploits a homomorphic encryption function to decrease the complexities in the forwarder node. It offers a data confidentiality privacy preserving feature, which can efficiently thwart traffic analysis. The data of the packet is encrypted and the tag of the packet is encrypted by a homomorphic encryption function. The forwarder node random linearly codes the encrypted data and directly processes the cryptotext tags based on the homomorphism feature. Extensive security analysis and performance evaluations demonstrate the validity and efficiency of the proposed scheme.
Saravanakumar Pichumani;T. V. P. Sundararajan;Rajesh Kumar Dhanaraj;Yunyoung Nam;Seifedine Kadry
Journal of Internet Technology
/
제22권6호
/
pp.1287-1297
/
2021
Data aggregation is the significant process in which the information is gathered and combines data to decrease the amount of data transmission in the WSN. The sensor devices are susceptible to node attacks and security issues such as data confidentiality and data privacy are extremely important. A novel technique called Ruzicka Index Regressive Homomorphic Ephemeral Key Benaloh Cryptography (RIRHEKBC) technique is introduced for enhancing the security of data aggregation and data privacy in WSN. By applying the Ruzicka Index Regressive Homomorphic Ephemeral Key Benaloh Cryptography, Ephemeral private and public keys are generated for each sensor node in the network. After the key generation, the sender node performs the encryption using the receiver public key and sends it to the data aggregator. After receiving the encrypted data, the receiver node uses the private key for decrypting the ciphertext. The key matching is performed during the data decryption using Ruzicka Indexive regression function. Once the key is matched, then the receiver collects the original data with higher security. The simulation result proves that the proposed RIRHEKBC technique increases the security of data aggregation and minimizes the packet drop, and delay than the state-of-the- art methods.
International Journal of Internet, Broadcasting and Communication
/
제13권2호
/
pp.60-66
/
2021
Blockchain is a technology that enables trust-based consensus and verification based on a decentralized network. Distributed ID (DID) is based on a decentralized structure, and users have the right to manage their own ID. Recently, interest in self-sovereign identity authentication is increasing. In this paper, as a method for transparent and safe sovereignty management of data, among data pseudonymization techniques for blockchain use, various methods for data encryption processing are examined. The public key technique (homomorphic encryption) has high flexibility and security because different algorithms are applied to the entire sentence for encryption and decryption. As a result, the computational efficiency decreases. The hash function method (MD5) can maintain flexibility and is higher than the security-related two-way encryption method, but there is a threat of collision. Zero-knowledge proof is based on public key encryption based on a mutual proof method, and complex formulas are applied to processes such as personal identification, key distribution, and digital signature. It requires consensus and verification process, so the operation efficiency is lowered to the level of O (logeN) ~ O(N2). In this paper, data encryption processing for blockchain DID, based on zero-knowledge proof, was proposed and a one-way encryption method considering data use range and frequency of use was proposed. Based on the content presented in the thesis, it is possible to process corrected zero-knowledge proof and to process data efficiently.
본 연구에서는 완전동형암호로 암호화된 데이터에 적용할 수 있는 가산기 및 다수개의 데이터를 가산할 때 적용할 수 있는 성능이 향상된 가산 방법을 제안한다. 제안 산술 가산기는 기존의 하드웨어 기반의 산술 가산기 중 최적 회로단계(level)를 가지는 Kogge-Stone Adder 방법을 기반으로 하며, 완전동형암호가 제공하는 암호학적 SIMD(Single Instruction for Multiple Data) 기법을 적용하기에 적합하게 설계되었다. 제안한 다수 가산 방법은 완벽한 가산 결과를 보장하는 Kogge-Stone Adder를 반복적으로 사용하여 다수개의 데이터를 가산하지 않고, 3개 이상의 수를 더해야 할 경우, Full-Adder를 이용하여 3개의 수를 최종 C(Carry-out)과 논리합의 결과인 S(Sum) 의 두 개로 줄인다. 이러한 과정을 반복하여 최종적으로 두 개의 수를 더할 경우에만 Kogge-Stone Adder를 사용하여 가산하는 방법이다. 제안 방법은 더하고자 하는 데이터의 개수가 많아질수록 성능이 비약적으로 향상되었고, 이를 실험을 통해 검증한다.
As deep learning has become an essential part of human lives, the requirement for Deep Learning as a Service (DLaaS) is growing. Since using remote cloud servers induces privacy concerns for users, a Fully Homomorphic Encryption (FHE) arises to protect users' sensitive data from a malicious attack in the cloud environment. However, the FHE cannot support several computations, including the most popular activation function, Rectified Linear Unit (ReLU). This paper analyzes several polynomial approximation methods for ReLU to utilize FHE in DLaaS.
In the Internet-of-Things (IoT) or blockchain-based network systems, secure keys may be stored in individual devices; thus, individual devices should protect data by performing secure operations on the data transmitted and received over networks. Typically, secure functions, such as a physical unclonable function (PUF) and fully homomorphic encryption (FHE), are useful for generating safe keys and distributing data in a network. However, to provide these functions in embedded devices for IoT or blockchain systems, proper inspection is required for designing and implementing embedded system-on-chip (SoC) modules through overhead and performance analysis. In this paper, a virtual platform (SoC VP) was developed that includes a secure key generation module with a PUF and FHE. The SoC VP platform was implemented using SystemC, which enables the execution and verification of various aspects of the secure key generation module at the electronic system level and analyzes the system-level execution time, memory footprint, and performance, such as randomness and uniqueness. We experimentally verified the secure key generation module, and estimated the execution of the PUF key and FHE encryption based on the unit time of each module.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.