• Title/Summary/Keyword: homographic line

Search Result 3, Processing Time 0.016 seconds

Multiple Camera Collaboration Strategies for Dynamic Object Association

  • Cho, Shung-Han;Nam, Yun-Young;Hong, Sang-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1169-1193
    • /
    • 2010
  • In this paper, we present and compare two different multiple camera collaboration strategies to reduce false association in finding the correspondence of objects. Collaboration matrices are defined with the required minimum separation for an effective collaboration because homographic lines for objects association are ineffective with the insufficient separation. The first strategy uses the collaboration matrices to select the best pair out of many cameras having the maximum separation to efficiently collaborate on the object association. The association information in selected cameras is propagated to unselected cameras by the global information constructed from the associated targets. While the first strategy requires the long operation time to achieve the high association rate due to the limited view by the best pair, it reduces the computational cost using homographic lines. The second strategy initiates the collaboration process of objects association for all the pairing cases of cameras regardless of the separation. In each collaboration process, only crossed targets by a transformed homographic line from the other collaborating camera generate homographic lines. While the repetitive association processes improve the association performance, the transformation processes of homographic lines increase exponentially. The proposed methods are evaluated with real video sequences and compared in terms of the computational cost and the association performance. The simulation results demonstrate that the proposed methods effectively reduce the false association rate as compared with basic pair-wise collaboration.

Locally Initiating Line-Based Object Association in Large Scale Multiple Cameras Environment

  • Cho, Shung-Han;Nam, Yun-Young;Hong, Sang-Jin;Cho, We-Duke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.358-379
    • /
    • 2010
  • Multiple object association is an important capability in visual surveillance system with multiple cameras. In this paper, we introduce locally initiating line-based object association with the parallel projection camera model, which can be applicable to the situation without the common (ground) plane. The parallel projection camera model supports the camera movement (i.e. panning, tilting and zooming) by using the simple table based compensation for non-ideal camera parameters. We propose the threshold distance based homographic line generation algorithm. This takes account of uncertain parameters such as transformation error, height uncertainty of objects and synchronization issue between cameras. Thus, the proposed algorithm associates multiple objects on demand in the surveillance system where the camera movement dynamically changes. We verify the proposed method with actual image frames. Finally, we discuss the strategy to improve the association performance by using the temporal and spatial redundancy.

Target Object Detection Based on Robust Feature Extraction (강인한 특징 추출에 기반한 대상물체 검출)

  • Jang, Seok-Woo;Huh, Moon-Haeng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.7302-7308
    • /
    • 2014
  • Detecting target objects robustly in natural environments is a difficult problem in the computer vision and image processing areas. This paper suggests a method of robustly detecting target objects in the environments where reflection exists. The suggested algorithm first captures scenes with a stereo camera and extracts the line and corner features representing the target objects. This method then eliminates the reflected features among the extracted ones using a homographic transform. Subsequently, the method robustly detects the target objects by clustering only real features. The experimental results showed that the suggested algorithm effectively detects the target objects in reflection environments rather than existing algorithms.