• Title/Summary/Keyword: homogenous

Search Result 488, Processing Time 0.029 seconds

Analysis of the Impacts of Korea-US FTA on the Pork Market in Korea (한.미 FTA가 국내산 돼지고기 시장에 미치는 영향 분석)

  • Ahn, Byeong-Il;Jo, Young-Deuk
    • Journal of agriculture & life science
    • /
    • v.43 no.2
    • /
    • pp.55-63
    • /
    • 2009
  • This paper analyzes the effects of Korea-US FTA on the pork market in Korea. Without distinction of chilled and frozen pork, previous studies that investigate the impacts of FTA posit single category of pork. Moreover, many prior studies assume the domestic pork and imported one are homogenous. This study fills this gap. The simulated influences of Korea-US FTA on the price of domesitc pork are -2.69 to -15.96 percents. The FTA is simulated to result in the fall of domestic production by 1.35 to 5.6 percents.

Investigation of the behavior of a crack between two half-planes of functionally graded materials by using the Schmidt method

  • Zhou, Zhen-Gong;Wang, Biao;Wu, Lin-Zhi
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.425-440
    • /
    • 2005
  • In this paper, the behavior of a crack between two half-planes of functionally graded materials subjected to arbitrary tractions is resolved using a somewhat different approach, named the Schmidt method. To make the analysis tractable, it is assumed that the Poisson's ratios of the mediums are constants and the shear modulus vary exponentially with coordinate parallel to the crack. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations in which the unknown variables are the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the jumps of the displacements across the crack surfaces are expanded in a series of Jacobi polynomials. This process is quite different from those adopted in previous works. Numerical examples are provided to show the effect of the crack length and the parameters describing the functionally graded materials upon the stress intensity factor of the crack. It can be shown that the results of the present paper are the same as ones of the same problem that was solved by the singular integral equation method. As a special case, when the material properties are not continuous through the crack line, an approximate solution of the interface crack problem is also given under the assumption that the effect of the crack surface interference very near the crack tips is negligible. It is found that the stress singularities of the present interface crack solution are the same as ones of the ordinary crack in homogenous materials.

Single cell heterogeneity in human pluripotent stem cells

  • Yang, Seungbok;Cho, Yoonjae;Jang, Jiwon
    • BMB Reports
    • /
    • v.54 no.10
    • /
    • pp.505-515
    • /
    • 2021
  • Human pluripotent stem cells (hPSCs) include human embryonic stem cells (hESCs) derived from blastocysts and human induced pluripotent stem cells (hiPSCs) generated from somatic cell reprogramming. Due to their self-renewal ability and pluripotent differentiation potential, hPSCs serve as an excellent experimental platform for human development, disease modeling, drug screening, and cell therapy. Traditionally, hPSCs were considered to form a homogenous population. However, recent advances in single cell technologies revealed a high degree of variability between individual cells within a hPSC population. Different types of heterogeneity can arise by genetic and epigenetic abnormalities associated with long-term in vitro culture and somatic cell reprogramming. These variations initially appear in a rare population of cells. However, some cancer-related variations can confer growth advantages to the affected cells and alter cellular phenotypes, which raises significant concerns in hPSC applications. In contrast, other types of heterogeneity are related to intrinsic features of hPSCs such as asynchronous cell cycle and spatial asymmetry in cell adhesion. A growing body of evidence suggests that hPSCs exploit the intrinsic heterogeneity to produce multiple lineages during differentiation. This idea offers a new concept of pluripotency with single cell heterogeneity as an integral element. Collectively, single cell heterogeneity is Janus-faced in hPSC function and application. Harmful heterogeneity has to be minimized by improving culture conditions and screening methods. However, other heterogeneity that is integral for pluripotency can be utilized to control hPSC proliferation and differentiation.

Prevalence and patterns of tooth agenesis among patients aged 12-22 years: A retrospective study

  • Eliacik, Basak Kiziltan;Atas, Cafer;Polat, Gunseli Guven
    • The korean journal of orthodontics
    • /
    • v.51 no.5
    • /
    • pp.355-362
    • /
    • 2021
  • Objective: This study aimed to establish the prevalence and patterns of nonsyndromic tooth agenesis in patients referred to a tertiary health care facility. Methods: The intraoral records and panoramic radiographs of 9,874 patients aged 12-22 years were evaluated. The study group included 716 patients (371 male, 345 female) with non-syndromic agenesis of at least one tooth (except the third molars). The study data were assessed using descriptive statistics, chi-square test, and Mann-Whitney U test, while patterns were evaluated using a tooth agenesis code (TAC) tool. Results: A total of 1,627 congenitally missing teeth, were found in patients with non-syndromic tooth agenesis, with an average of 2.27 missing teeth per patient. The prevalence of tooth agenesis was 7.25%, and the most commonly missing teeth were the left mandibular second premolars (10.17%). The age group comparison revealed no significant difference in the median number of missing teeth per patient according to the cutoff values for ages between 12 and 22 years. When the missing teeth were examined separately according to quadrants, 114 different tooth agenesis patterns (upper right quadrant = 28, upper left quadrant = 27, lower left quadrant = 31, and lower right quadrant = 28) were identified, and 81 of these patterns appeared only once. Conclusions: This study highlights the benefits of applying the TAC tool in a large sample population. The application of the TAC tool in such studies will enable the development of template treatment plans by determining homogenous patterns of tooth agenesis in certain populations.

Dynamic instability region analysis of sandwich piezoelectric nano-beam with FG-CNTRCs face-sheets based on various high-order shear deformation and nonlocal strain gradient theory

  • Arefi, Mohammad;Pourjamshidian, Mahmoud;Arani, Ali Ghorbanpour
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.157-171
    • /
    • 2019
  • In this research, the dynamic instability region (DIR) of the sandwich nano-beams are investigated based on nonlocal strain gradient elasticity theory (NSGET) and various higher order shear deformation beam theories (HSDBTs). The sandwich piezoelectric nano-beam is including a homogenous core and face-sheets reinforced with functionally graded (FG) carbon nanotubes (CNTs). In present study, three patterns of CNTs are employed in order to reinforce the top and bottom face-sheets of the beam. In addition, different higher-order shear deformation beam theories such as trigonometric shear deformation beam theory (TSDBT), exponential shear deformation beam theory (ESDBT), hyperbolic shear deformation beam theory (HSDBT), and Aydogdu shear deformation beam theory (ASDBT) are considered to extract the governing equations for different boundary conditions. The beam is subjected to thermal and electrical loads while is resting on Visco-Pasternak foundation. Hamilton principle is used to derive the governing equations of motion based on various shear deformation theories. In order to analysis of the dynamic instability behaviors, the linear governing equations of motion are solved using differential quadrature method (DQM). After verification with validated reference, comprehensive numerical results are presented to investigate the influence of important parameters such as various shear deformation theories, nonlocal parameter, strain gradient parameter, the volume fraction of the CNTs, various distributions of the CNTs, different boundary conditions, dimensionless geometric parameters, Visco-Pasternak foundation parameters, applied voltage and temperature change on the dynamic instability characteristics of sandwich piezoelectric nano-beam.

Comparison of postural control between subgroups of persons with nonspecific chronic low back and healthy controls during the modified Star Excursion Balance Test

  • Shallan, Amjad;Lohman, Everett;Alshammari, Faris;Dudley, Robert;Gharisia, Omar;Al-Marzouki, Rana;Hsu, Helen;Daher, Noha
    • Physical Therapy Rehabilitation Science
    • /
    • v.8 no.3
    • /
    • pp.125-133
    • /
    • 2019
  • Objective: To compare the postural control between non-specific chronic low back pain (NSCLBP) subgroups and healthy people during dynamic balance performance using a modified Star Excursion Balance Test (mSEBT). Design: Cross-sectional study. Methods: Eighteen NSCLBP subjects (9 active extension pattern [AEP], 9 flexion pattern [FP]), and 10 healthy controls were enrolled in this study. All subjects performed mSEBT on their dominant leg on a force plate. Normalized reach distance and balance parameters, including the center of pressure (COP) displacement and velocity, were recorded. Results: There were significant differences in mean reach distances in both posterolateral and posteromedial (PM) reach directions between AEP and healthy subjects (p<0.001) and between FP and healthy subjects (p<0.001). However, there were no significant differences among the three groups in the anterior reach direction. Also, the results showed no significant differences in mean COP variables (velocity and displacement) between pooled NSCLBP and healthy subjects. However, the subjects were reclassified into AEP, FP and healthy groups and the results showed a significant difference in mean COP velocity in the PM direction between AEP and FP subjects (p=0.048), and between AEP and healthy subjects (p=0.024). Conclusions: The findings in this study highlight the heterogeneity of the individuals with NSCLBP and the importance of identifying the homogenous subgroups. Individuals with AEP and FP experience deficits in dynamic postural control compared to healthy controls. In addition, the findings of this study support the concept of the Multidimensional Classification System.

Theoretical models of threshold stress intensity factor and critical hydride length for delayed hydride cracking considering thermal stresses

  • Zhang, Jingyu;Zhu, Jiacheng;Ding, Shurong;Chen, Liang;Li, Wenjie;Pang, Hua
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1138-1147
    • /
    • 2018
  • Delayed hydride cracking (DHC) is an important failure mechanism for Zircaloy tubes in the demanding environment of nuclear reactors. The threshold stress intensity factor, $K_{IH}$, and critical hydride length, $l_C$, are important parameters to evaluate DHC. Theoretical models of them are developed for Zircaloy tubes undergoing non-homogenous temperature loading, with new stress distributions ahead of the crack tip and thermal stresses involved. A new stress distribution in the plastic zone ahead of the crack tip is proposed according to the fracture mechanics theory of second-order estimate of plastic zone size. The developed models with fewer fitting parameters are validated with the experimental results for $K_{IH}$ and $l_C$. The research results for radial cracking cases indicate that a better agreement for $K_{IH}$ can be achieved; the negative axial thermal stresses can lessen $K_{IH}$ and enlarge the critical hydride length, so its effect should be considered in the safety evaluation and constraint design for fuel rods; the critical hydride length $l_C$ changes slightly in a certain range of stress intensity factors, which interprets the phenomenon that the DHC velocity varies slowly in the steady crack growth stage. Besides, the sensitivity analysis of model parameters demonstrates that an increase in yield strength of zircaloy will result in a decrease in the critical hydride length $l_C$, and $K_{IH}$ will firstly decrease and then have a trend to increase with the yield strength of Zircaloy; higher fracture strength of hydrided zircaloy will lead to very high values of threshold stress intensity factor and critical hydride length at higher temperatures, which might be the main mechanism of crack arrest for some Zircaloy materials.

Characterization of starch and gum arabic-maltodextrin microparticles encapsulating acacia tannin extract and evaluation of their potential use in ruminant nutrition

  • Adejoro, Festus A.;Hassen, Abubeker;Thantsha, Mapitsi S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.977-987
    • /
    • 2019
  • Objective: The use of tannin extract and other phytochemicals as dietary additives in ruminants is becoming more popular due to their wide biological actions such as in methane mitigation, bypass of dietary protein, intestinal nematode control, among other uses. Unfortunately, some have strong astringency, low stability and bioavailability, and negatively affecting dry matter intake and digestibility. To circumvent these drawbacks, an effective delivery system may offer a promising approach to administer these extracts to the site where they are required. The objectives of this study were to encapsulate acacia tannin extract (ATE) with native starch and maltodextrin-gum arabic and to test the effect of encapsulation parameters on encapsulation efficiency, yield and morphology of the microparticles obtained as well as the effect on rumen in vitro gas production. Methods: The ATE was encapsulated with the wall materials, and the morphological features of freeze-dried microparticles were evaluated by scanning electron microscopy. The in vitro release pattern of microparticles in acetate buffer, simulating the rumen, and its effect on in vitro gas production was evaluated. Results: The morphological features revealed that maltodextrin/gum-arabic microparticles were irregular shaped, glossy and smaller, compared with those encapsulated with native starch, which were bigger, and more homogenous. Maltodextrin-gum arabic could be used up to 30% loading concentration compared with starch, which could not hold the core material beyond 15% loading capacity. Encapsulation efficiency ranged from $27.7%{\pm}6.4%$ to $48.8%{\pm}5.5%$ in starch and $56.1%{\pm}4.9%$ to $64.8%{\pm}2.8%$ in maltodextrin-gum arabic microparticles. Only a slight reduction in methane emission was recorded in encapsulated microparticles when compared with the samples containing only wall materials. Conclusion: Both encapsulated products exhibited the burst release pattern under the pH conditions and methane reduction associated with tannin was marginal. This is attributable to small loading percentages and therefore, other wall materials or encapsulation methods should be investigated.

An extension of a high order approach for free vibration analysis of the nano-scale sandwich beam with steel skins for two types of soft and stiff cores

  • Marandi, S. Masoud;Dehkordi, Mohsen Botshekanan;Nourbakhsh, S. Hassan
    • Steel and Composite Structures
    • /
    • v.31 no.3
    • /
    • pp.261-276
    • /
    • 2019
  • The study investigates the free vibration of a nano-scale sandwich beam by an extended high order approach, which has not been reported in the existing literature. First-order shear deformation theory for steel skins and so-called high-order sandwich panel theory for the core are applied. Next, the modified couple stress theory is used for both skins and cores. The Hamilton principle is utilized for deriving equations and corresponding boundary conditions. First, in the study the three-mode shapes natural frequencies for various material parameters are investigated. Also, obtained results are evaluated for two types of stiff and soft cores and isotropic, homogenous steel skins. In the research since the governing equations and also the boundary conditions are nonhomogeneous, therefore some closed-form solutions are not applicable. So, to obtain natural frequencies, the boundary conditions are converted to initial conditions called the shooting method as the numerical one. This method is one of the most robust approaches to solve complex equations and boundary conditions. Moreover, three types of simply supported on both sides of the beam (S-S), simply on one side and clamp supported on the other one (S-C) and clamped supported on both sides (C-C) are scrutinized. The parametric study is followed to evaluate the effect of nano-size scale, geometrical configurations for skins, core and material property change for cores as well. Results show that natural frequencies increase by an increase in skins thickness and core Young modulus and a decrease in beam length, core thickness as well. Furthermore, differences between obtained frequencies for soft and stiff cores increase in higher mode shapes; while, the more differences are evaluated for the stiff one.

Thermal and Surface Properties of PET/Nylon66/Clay Nanocomposites (PET/Nylon66/Clay 나노복합재료의 열적물성 및 표면특성)

  • Lee, Minho;Ku, Jahun;Min, Byung Hun;Kim, Jeong Ho
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.490-494
    • /
    • 2011
  • Nanocomposites of blends of polyethyleneterephthalate (PET) and polyamide66 (Nylon66) containing natural and organically modified montmorillonite clays (PM, $Cloisite^{(R)}$ 25A and 15A) were prepared by melt mixing. DSC results showed that the addition of clay changed the crystallization behavior of PET/Nylon66 nanocomposites. Clay C25A was observed to most significantly change the crystallization temperature than other clays in blends of PET and Nylon66, which may be caused by the difference in interaction with matrix polymers. AFM results also showed that the lowest value of surface roughness was observed for nanocomposites containing C25A indicating the smooth and relatively homogenous surface. Mechanical properties measurement showed the similar results. Contact angle was measured to study the difference in hydrophobicity. An increase in contact angle was observed for nanocomposites with C25A or C15A due to the increased hydrophobicity.