• Title/Summary/Keyword: homogenization treatment

Search Result 93, Processing Time 0.026 seconds

The Microstructural Evolution of Mg-10Al-Mn Alloy by Cooling Plate During Homogenization Treatment (냉각판법에 의한 Mg-10Al-Mn 합금의 균질화 처리에 따른 미세조직 변화)

  • Kim, Dae-Hwan;Choi, Seung-Hwa;Kim, Hee-Kyung;Shim, Sung-Young;Lim, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.30 no.6
    • /
    • pp.235-240
    • /
    • 2010
  • The evolution of microstructure and phases of Mg-10Al-Mn alloy by cooling plate method during homogenization treatment have been investigated with metallographic analysis, scanning electron microscopy and energy dispersive spectroscopy. The ingots used for this experiment were prepared by cooling plate and homogenization heat treatment was performed at 300 and $400^{\circ}C$ for various holding times (0, 1, 4, 8 and 12h). The casting ingots were consisted of the fine grains and eutectic phases. And, these eutectic phases were dissolved into the matrix during homogenization treatment at $400^{\circ}C$ but the lower temperature (at $300^{\circ}C$) did not be.

Effect of Ultrasonic treatment on the Isolation of the Chlamydospores of Cylindrocarpon destructans Causing Root rot of Panax ginseng (초음파처리에 의한 인삼 뿌리썩음병균 Cylindrocarpon destructans 후막포자의 분리)

  • 조대휘;유연현
    • Journal of Ginseng Research
    • /
    • v.24 no.2
    • /
    • pp.53-57
    • /
    • 2000
  • Chlamydospores were isolated from hyphae of Cylindrocanon destmctans by homogenization and/or ultrasonic treatment. Rate of the isolated chlamydospores by the homogenization with glass tissue grinder were 9.8% of all total chlamydospores formed in the culture of C. destructans. The length of mycelial fragments after the homogenization was about 400㎛ They were, however, formed in clusters of the chlamydospores and the mycelia The rate of the isolated chlamydospores from additional ultrasonic treatment after the homogenization of the mycelia were 74.3%. The length of mycelial fragments with the ultrasonic treatment was about 20 fm and chlamydospores seemed to be isolated from the mycelial mats and dispersed evenly in the culture. The numbers of chlamydospore in a catena were 1 to 8 cells after the homogenization on potato dextrose agar (PDA). Meanwhile the numbers of them after added ultrasonic treatment were 1 to 4 cells. Germination percentages of the isolated chlamydospores from the ultrasonic treatment were 46.8% after incubation of 2 days on PDA at 20。C and 60.7% after incubation of 13 days at 5。C, respectively. Germination rate of chlamydospores to the total chlamydospores produced by the ultrasonic treatment was 55.8%. However, it was increased to 74% when it was measured in the germinated catenae to the total catenae.

  • PDF

Effect of Alloying Elements and Homogenization Treatment on Carbide Formation Behavior in M2 High Speed Steels (합금성분변화와 균질화처리에 따른 M2 고속도강의 탄화물 형성거동)

  • Ha, Tae Kwon;Yang, Eun Ig;Jung, Jae Young;Park, Shin Wha
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.589-597
    • /
    • 2010
  • In the present study, the effect of variation in alloying elements on the carbide formation behavior during casting and homogenization treatment of M2 high speed steels was investigated. M2 high speed steels of various compositions were produced by vacuum induction melting. Contents of C, Cr, W, Mo, and V were varied from the basic composition of 0.8C, 0.3Si, 0.2Mn, 4.0Cr, 6.0W, 5.0Mo, and 2.0V in weight percent. Homogenization treatment at $1150^{\circ}C$ for 1.5 hr followed by furnace cooling was performed on the ingots. Area fraction and chemical compositions of eutectic carbide in as-cast and homogenized ingots were analyzed. Area fraction of eutectic carbide appeared to be higher in the ingots with higher contents of alloying elements the area fraction of eutectic carbide also appeared to be higher on the surface regions than in the center regions of ingots. As a result of the homogenization treatment, $M_2C$ carbide, which was the primary eutectic carbide in the as-cast ingots, decomposed into thermodynamically stable carbides, MC and $M_6C$. The latter carbide was found to be the main one after homogenization. Fine carbides uniformly distributed in the matrix was found to be MC type carbide and coarsened by homogenization.

Effect of Homogenization Treatment on Magnetic Properties of HDDR Treated Nd-Fe-Ga-Nb-B Alloy (모합금의 균질화처리가 HDDR 처리된 Nd-Fe-Ga-Nb-B 합금의 자기적 특성에 미치는 영향)

  • Yu, J.H.;Lee, S.H.;Kim, D.H.;Lee, D.W.;Kim, B.K.;Choi, M.H.;Kim, Y.D.
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.285-290
    • /
    • 2009
  • HDDR treated anisotropic Nd-Fe-B powders have been widely used, due to their excellent magnetic properties, especially for sheet motors and sunroof motors of hybrid and electric vehicles. Final microstructure and coercivity of such Nd-Fe-B powders depend on the state of starting mother alloys, so additional homogenization treatment is required for improving magnetic properties of them. In this study, a homogenization treatment was performed at $900\sim1140^{\circ}C$ in order to control the grain size and Nd-rich phase distribution, and at the same time to improve coercivity of the HDDR treated magnetic powders. FE-SEM was used for observing grain size of the HDDR treated powder and EPMA was employed to observe distribution of Nd-rich phase. Magnetic properties were analyzed with a vibrating sample magnetometer.

Microstructure and Mechanical Properties in Al-Li-(Be) Alloys. (Al-Li-(Be)합금 주괴의 미세조직과 기계적 성질)

  • Eun, Il-Sang;Cho, Hyun-Kee
    • Journal of Korea Foundry Society
    • /
    • v.10 no.5
    • /
    • pp.417-425
    • /
    • 1990
  • The purpose of this study is to investigate the effect of Be addition on the microstructure and mechanical properties of as-cast and homogenization treated Al-Li-(Be)alloys. The ductility of as-cast Al-Li alloy was increased by the addition of Be and the fracture morphology was changed from brittle to ductile mode. Also, hardness and strength have been decreased by homogenization treatment. The morphology of eutectic structure which consists of ${\alpha}(Al)$ and ${\alpha}(Be)$ was changed from lammellae to spherical type by homogenization treatment. The shape of ${\alpha}(Be)$ phase has been revealed as hollow type by TEM observation. It consists of outer surfaces with well defined crystal facets and the core filled with ${\alpha}(Al)$. The microstructure of as-cast Al-Li-Be alloys showed coarse ${\delta}'$, fine ${\delta}'$, and coarse ${\delta}$ phases. The coarse and fine ${\delta}'$ phases were formed at Be-rich phase /matrix interfaces and in matrix, respectively. By homogenization treatment, the ${\delta}$ phase in Al-Li and Al-Li-Be alloys dissolved and the size of ${\delta}$ phase in Al-Li-Be alloys was finer than that of Al-Li alloy.

  • PDF

Distribution Behavior of Solute Element in Al-Mg-Zn Alloy Continuous Cast Billet During Homogenization Treatment (Al-Mg-Zn계 알루미늄 합금 연주 빌렛 균질화처리과정 중 용질원소 거동변화)

  • Myoung-Gyun Kim
    • Journal of Korea Foundry Society
    • /
    • v.43 no.6
    • /
    • pp.286-293
    • /
    • 2023
  • In this study, we investigated the microstructural evolution of Al-Mg-Zn aluminum alloy billet during homogenization treatment using OM, SEM, EDS and DSC. There were numerous phases found, such as; AlMgZn, AlMgFe, and AlMgZnSi phases, in the grain of the cast billet. After 6 hours homogenization treatment, Zn was mostly dissolved, whereas, Mg and Si were only partly dissolved. Accordingly, only AlMgFe and AlMgSi remained. After 18 hours, all of the leftover Mg and Si were dissolved, leaving only AlMgFe, which was also found after 24 hours. The results of the alloy design program, JMatPro showed that Mg dissloved more rapidly than Zn. According to the homogenization kinetic equation, Mg and Zn are completely dissolved within 1.9 and 3.5 hours, respectively.

Investigating the Effect of Homogenization Heat Treatment on the Microstructure and Texture of Magnesium Alloy Sheet Manufactured via Twin Roll Casting (트윈롤 주조법으로 제조된 마그네슘합금 판재의 균질화 열처리에 따른 미세조직 및 집합조직 발달)

  • Lee, Hee Jae;Park, No Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.3
    • /
    • pp.122-129
    • /
    • 2021
  • This study focuses on the microstructural development of 99% magnesium alloy sheet manufactured using twin roll casting (TRC) process. Herein, a plate with a thickness of 5 mm was manufactured using the TRC process, homogenization heat treatment was performed at 400℃ for 2-32 h, and finally, the change in microstructure was evaluated via optical microscopy and textural analysis. The results suggest that the plate manufactured using the TRC process was not destroyed and was successfully rolled into a plate. Microscopic observation suggested that the dendritic cast structure was arranged along the rolling direction. And the central layer of the rolled plate, where was present in a liquid state at the beginning of rolling, solidified later during the TRC process to form central segregation. The initial cast structure and inhomogeneous structure of the plate were recrystallized by homogenization heat treatment for only 2 h, and it was confirmed that the segregated part of the central layer became homogeneous and recrystallization occurred. Grain growth occurred as the heat treatment time increased, and secondary recrystallization occurred, wherein only some grains were grown. The textural analysis, which was conducted via X-ray diffraction, confirmed that the relatively weak basal plane texture developed using the TRC process was formed into a random texture after heat treatment.

Disinfection Models to Predict Inactivation of Artemia sp. via Physicochemical Treatment Processes (물리·화학적 처리공정을 이용한 Artemia sp. 불활성화 예측을 위한 소독 모델)

  • Zheng, Chang;Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.26 no.4
    • /
    • pp.421-432
    • /
    • 2017
  • In this study, we examined the suitability of ten disinfection models for predicting the inactivation of Artemia sp. via single or combined physical and chemical treatments. The effect of Hydraulic Retention Time (HRT) on the inactivation of Artemia sp. was examined experimentally. Disinfection models were fitted to the experimental data by using the GInaFiT plug-in for Microsoft Excel. The inactivation model were evaluated on the basis of RMSE (Root Mean Square Error), SSE (mean Sum Square Error) and $r^2$. An inactivation model with the lowest RMSE, SSE and $r^2$ close to 1 was considered the best. The Weibull+Tail model was found to be the most appropriate for predicting the inactivation of Artemia sp. via electrolytic treatment and electrolytic-ultrasonic combined treatment. The Log-linear+Tail model was the most appropriate for modeling inactivation via homogenization and combined electrolytic-homogenization treatment. The double Weibull disinfection model was the most suitable for the predicting inactivation via ultrasonic treatment.

Cholesterol Removal and Flavor Development in Cheddar Cheese

  • Kwak, H.S.;Jung, C.S.;Seok, J.S.;Ahn, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.409-416
    • /
    • 2003
  • This study was carried out to find a cholesterol removal rate, flavor development and bitter amino acid productions in Cheddar cheese treated with $\beta$-cyclodextrin (CD): 1) Control (no homogenization, no $\beta$-CD), and 2) Milk treatment (1000 psi milk homogenization, 1% $\beta$-CD). The cholesterol removal of the cheese was 79.3%. The production of short-chain free fatty acids (FFA) increased with a ripening time in both control and milk treated cheese. The releasing quantity of short-chain FFA was higher in milk treated cheese than control at 5 and 7 mo ripening. Not much difference was found in neutral volatile compound production between samples. In bitter-tasted amino acids, milk treatment group produced much higher than control. In sensory analysis, texture score of control Cheddar cheese significantly increased with ripening time, however, that in cholesterol-reduced cheese decreased dramatically. Our results indicated that the cheese made by $\beta$-CD treated milk with low pressure homogenization showed an effective cholesterol reduction and a rapid cheese ripening, while no capture of flavor compounds by $\beta$-CD.

Characterization of Extrusion Parts for after Pre-aging Treatment in an Al-4.8Zn-1.3Mg Alloy (안정화 열처리에 의한 Al-4.8Zn-1.3Mg계 합금 압출재 특성 평가)

  • Lee, Chang-Yeon
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.818-823
    • /
    • 2018
  • In this study, the effect of pre-aging treatment for inhibition of natural aging of Al-4.8Zn-1.3Mg alloy by extrusion process was investigated. Firstly, the as-cast microstructure of Al-4.8Zn-1.3Mg alloy billet and its evolution during homogenization($460^{\circ}C$, $4h+510^{\circ}C$, 5h) were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), hardness analysis. The as-cast microstructures of Al-4.8Zn-1.3Mg alloy reveal $Mg_2Zn$, $Al_5Cu$, $Al_{13}Cu$ formed between dendrities. After homogenization, MgZn, $Al_4Cu$, $Al_{13}Cu$ phases precipitated into the matrix. In addition, standard deviation of homogenized billet was improved than as-cast billet from 2.62 to 0.99. According to pre-aging($100^{\circ}C$, 1h) Al-4.8Zn-1.3Mg alloy by extrusion process, yield strength and tensile strength deviation improved more than condition by natural aging.