• Title/Summary/Keyword: homogeneous mode

Search Result 164, Processing Time 0.023 seconds

Scaled Boundary Finite Element Methods for Non-Homogeneous Half Plane (비동질 반무한 평면에서의 비례경계유한요소법)

  • Lee, Gye-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.127-136
    • /
    • 2007
  • In this paper, the equations of the scaled boundary finite element method are derived for non-homogeneous half plane and analyzed numerically In the scaled boundary finite element method, partial differential equations are weaken in the circumferential direction by approximation scheme such as the finite element method, and the radial direction of equations remain in analytical form. The scaled boundary equations of non-homogeneous half plane, its elastic modulus varies as power function, are newly derived by the virtual work theory. It is shown that the governing equation of this problem is the Euler-Cauchy equation, therefore, the logarithm mode used in the half plane problem is not valid in this problem. Two numerical examples are analysed for the verification and the feasibility.

Mode I and Mode II Analyses of a Crack Normal to the Graded Interlayer in Bonded Materials

  • Park, Hyung-Jip
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1386-1397
    • /
    • 2001
  • In this paper, the plane elasticity equations are used to investigate the in-plane normal (mode I) and shear (mode II) behavior of a crack perpendicular to and terminating at the interface in bonded media with a graded interfacial zone. The interfacial Bone is treated as a nonhomogeneous interlayer with the continuously varying elastic modulus between the two dissimilar, homogeneous semi-infinite constituents. For each of the individual loading modes, based on the Fourier integral transform technique, a singular integral equation with a Cauchy kernel is derived in a separate but parallel manner. In the numerical results, the values of corresponding modes of stress intensity factors are illustrated for various combinations of material and geometric parameters of the bonded media in conjunction with the effect of the material nonhomogeneity within the graded interfacial zone.

  • PDF

Experimental evaluation of discrete sliding mode controller for piezo actuated structure with multisensor data fusion

  • Arunshankar, J.;Umapathy, M.;Bandhopadhyay, B.
    • Smart Structures and Systems
    • /
    • v.11 no.6
    • /
    • pp.569-587
    • /
    • 2013
  • This paper evaluates the closed loop performance of the reaching law based discrete sliding mode controller with multisensor data fusion (MSDF) in real time, by controlling the first two vibrating modes of a piezo actuated structure. The vibration is measured using two homogeneous piezo sensors. The states estimated from sensors output are fused. Four fusion algorithms are considered, whose output is used to control the structural vibration. The controller is designed using a model identified through linear Recursive Least Square (RLS) method, based on ARX model. Improved vibration suppression is achieved with fused data as compared to single sensor. The experimental evaluation of the closed loop performance of sliding mode controller with data fusion applied to piezo actuated structure is the contribution in this work.

A Study on the Vehicle Vibration Mode through the On-line Test for Korean High Speed Train (한국형 고속전철의 주행시험을 통한 진동 모드 분석 연구)

  • 박찬경;김영국;김석원;김기환
    • Proceedings of the KSR Conference
    • /
    • 2003.10a
    • /
    • pp.156-161
    • /
    • 2003
  • Korean High Speed Train (KHST) has been tested on high speed line in JungBu site since it was developed in 2002. The data acquisition system was used to test successfully the on-line test for proving the dynamic performance of KHST. The recognition of system vibration mode for railway vehicle is essential to understand the characteristics of design for dynamic system and diagnose the dynamic problems of vehicle system during test and operation. But, up to now, there are the efforts to know the system vibration mode within limit of theoretical field only, not experimental approach with systematic method. The theoretical results are too reliable to apply to real design problem, because it is theoretically based on the homogeneous linear system although the real system have the nonlinear characteristics and vary the environmental conditions. Therefor, in this paper, it is proposed the efficient method of vibration analysis for rail vehicle system and this method apply to KHST to recognize the vibration mode characteristics of it. The results show that this method is able to make the system vibration modes for KHST clear.

  • PDF

Microstructure and Electrical Characteristics of ZnO-Bi2O3 Ceramics (ZnO-Bi2O3계 세라믹스의 미세구조 및 전기적 특성)

  • 이승주;한상목
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.6
    • /
    • pp.645-654
    • /
    • 1988
  • The microstructure and electrical characteristics of ZnO-Bi2O3 ceramics containing 5mol% Bi2O3 have been studied in relation to sintering temperature and mode. The distribution and thickness of Bi2O3 intergranular layer was varied with sintering temperature and mode. Intergranular layer was more homogeneous with increasing sintering temperature, when sintering by direct heating and rapid cooling mode showed the best distribution of intergranular layer. These microstructural changes affected electrical characteristics directly, at 140$0^{\circ}C$ and C mode obtained high value of electrical resistivity and nonlinear exponent. Varistor voltage decreased with increasing sintering temperature, increased with decreasing holding time at high temperature. Barrier voltage obtained by calculation was about 1.5V.

  • PDF

EO Characteristics in the Vertical Alignment (VA)-$\pi$ mode LCD Using the Tilt Angle Decrease Effect on the Blended Polymer (혼합된 polymer에서의 틸트 감소 효과를 이용한 VA-$\pi$ mode LCD의 전기광학 특성)

  • Lee, Kyung-Jun;Hwang, Jeoung-Yeon;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05d
    • /
    • pp.53-56
    • /
    • 2003
  • Blending effects for generating a pretilt angle in nematic liquid crystal (NLC) with negative dielectric anisotropy on the blended polyimide (PI) of homeotropic and homogeneous alignment surface were studied. Also, we investigated the EO performances for the advanced VA-$\pi$ cell using this homeotropic blended PI surface. A many decrease of tilt angle on the polymer surface to blend homeotropic PI and homogeneous PI with side chain type was measured, and the tilt angle decreased as blended ratio and rubbing strength increase. The blended effects for generating a pretilt angle were clearly observed, and the many decrease of tilt angle can be achieved by using the blended PI surface. The electro-optical (EO) characteristics using the advanced VA-$\pi$ cell using the homeotropic blended PI surface than that of conventional VA cell can be improved. We suggest that the developed advanced VA-$\pi$ cell on a homeotropic blended PI surface is a promising technique for the achievement of a fast response time, and a high contrast ratio.

  • PDF

The Acoustic Vibration Properties for Chicken Eggs (계란의 음향진동 특성)

  • 최완규;조한근
    • Journal of Biosystems Engineering
    • /
    • v.27 no.4
    • /
    • pp.293-300
    • /
    • 2002
  • Surface crack detection is an important aspect in the quality control process of egg markets. The acoustic vibration of an egg could be used as a critical factor in evaluating the eggshell quality. The mode shape indicates the egg vibration behavior at different locations with respect to the input impulse and provides important information for the optimum sensor location to obtain the desired acoustic measurements. Theoretical analysis and experimental measurements were conducted to determine the acoustic vibration modes in eggs. The resonant fiequencies of the first and second resonance mode of intact eggs were found to be distributed between 2kHz and 7kHz range. The measured mode shapes of an egg were similar to theoretical shapes of homogeneous, elastic spheres. An elliptical deformation at the equator ring of the egg was observed. The frequency peak of this mode was dominantly present in the frequency spectrum of an intact egg impacted at its sharp position. The mode shapes related to the first resonant frequency of an egg shelved that the optimum location for the measuring sensor was the 180 degrees position. A optimum location for the egg support was found to be the 90 degrees position having the smallest vibration magnitude.

Failure Mode and Failure Strength of Homogeneous Metals & Dissimilar Metals Bonded Single Lap-Shear Joints (동종금속 및 이종금속 단일 겹침 접착 시편의 파손모드 및 파손강도에 관한 연구)

  • Park, Beom Chul;Chun, Heoung-Jae;Park, Jong Chan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • In this paper, the experimental study and finite elements analysis were conducted on homogeneous and dissimilar metals single lap-shear bonded joints to investigate the factor that affect the joint failure load. It was found that factors which have the significant effects on the failure load of the joint was stiffness of the adherends. And from experimental results, it can be confirmed that the failure load increases linearly with overlap length increases. And the failure load of dissimilar metal joints is approximately 1KN(10~17%) larger than homogeneous metal joints. In order to confirm this phenomenon, the stress distribution and strain distribution of the specimens were analyzed through the finite element analysis. The difference between homogeneous metals joints and dissimilar metals joints is that stress and strain in adhesive are concentrated at the end of the overlap zone close to aluminium which has lower rigidity than aluminium in case of dissimilar metals joints. From high rigidity of steel, the stress concentration in bonds are decreased and it cause increase of the failure strength at dissimilar metal joints.

Determination of Thermal Dtress Intensity Factors for the Interface Crack under Vertical Uniform Heat Flow (수직 균일 열유동하에 있는 접합 경계면 균열의 열응력세기계수 결정)

  • 이강용;설창원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.201-208
    • /
    • 1991
  • In case that an interface crack exists in an infinite two-dimensional elastic bimaterial, the crack surface is insulated under traction free and the uniform heat flow vertical to the crack from infinite boundary is given. Temperature and stress potentials are obtained by using complex variable approach to solve Hilbert problems. The results are used to obtain thermal stress intensity factors. Only mode I thermal stress intensity factor occurs in case of the homogeneous material. Otherwise, mode I and II thermal stress intensity factor is much smaller than one of mode II.

Control of Off-axis Viewing Quality using Two Additional Homogeneous LC Layers in Twisted Nematic mode (두개의 수평 배향된 액정층을 이용한 비틀린 네마틱 액정 셀의 시야각 화질 조절)

  • Choi, Min-Oh;Lim, Young-Jin;Jeong, Eun;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.53-54
    • /
    • 2006
  • We have studied the viewing angle control of a twist nematic liquid crystal display (TN-LCD). The TN-LCD exhibits a bad image quality along vertical direction, due to characteristics such as low contrast ratio and grey scale inversion. The proposed new TN-LCD has the function of switching between the wide viewing mode and narrow viewing angle mode using two tilted LC layers at both sides of a TN-cell Tilt angles of the two LC layers, $14^{\circ}$ and $60^{\circ}$ were required in both wide viewing angle and narrow viewing angle modes, respectively.

  • PDF