• 제목/요약/키워드: homogeneous charge

검색결과 164건 처리시간 0.023초

부분 예혼합 압축착화 연소기법을 적용한 HSDI 디젤엔진의 배기 성능 개선 (Improvement of Emission Performances of a HSDI Diesel Engine with Partial Premixed Compression Ignition Combustion Method)

  • 정재우;강정호;김남호;민경덕;이기형;이정훈;김현옥;강우
    • 한국자동차공학회논문집
    • /
    • 제16권6호
    • /
    • pp.88-96
    • /
    • 2008
  • Currently, due to the serious world-wide air pollution by substances emitted from vehicles, emission control is enforced more firmly and it is expected that the regulation requirements for emission will become more severe. A new concept combustion technology that can reduce the NOx and PM in relation to combustion is urgently required. This study used a split injection method at a 4 cylinder common-rail direct injection diesel engine in order to apply the partially premixed charge compression ignition combustion method without significantly altering engine specifications And it is investigated that the effects of the injection ratio and SCV(swirl control valve) to emission characteristics. From these tests, soot(g) and NOx(g) emission could be reduced to 40% and 92% compared to base engine performance at specified engine driving conditions(6 points with weight factors) according to application of split injection and SCV(swirl control valve).

직분식 CNG 엔진에서 연료 분사시기의 변화가 연소 및 출력 특성에 미치는 영향 (The Effect of Fuel Injection Timing on Combustion and Power Characteristics in a DI CNG Engine)

  • 강정호;윤수한;이중순;박종상;하종률
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.193-200
    • /
    • 2007
  • Natural gas is one of the most promising alternatives to gasoline and diesel fuels because of its lower harmful emissions, including $CO_2$, and high thermal efficiency. In particular, natural gas is seen as an alternative fuel for heavy-duty Diesel Engines because of the lower resulting emissions of PM, $CO_2$ and $NO_x$. Almost all CNG vehicles use the PFI-type Engine. However, PFI-type CNG Engines have a lower brake horse power, because of reduced volumetric efficiency and lower burning speed. This is a result of gaseous charge and the time losses increase as compared with the DI-type. This study was conducted to investigate the effect of injection conditions (early injection mode, late injection mode) on the combustion phenomena and performances in the or CNG Engine. A DI Diesel Engine with the same specifications used in a previous study was modified to a DI CNG Engine, and injection pressure was constantly kept at 60bar by a two-stage pressure-reducing type regulator. In this study, excess air ratios were varied from 1.0 to the lean limit, at the load conditions 50% throttle open rate and 1700rpm. The combustion characteristics of the or CNG Engine - such as in-cylinder pressure, indicated thermal efficiency, cycle-by-cycle variation, combustion duration and emissions - were investigated. Through this method, it was possible to verify that the combustion duration, the lean limit and the emissions were improved by control of injection timing and the stratified mixture conditions. And combustion duration is affected by not only excess air ratio, injection timing and position of piston but gas flow condition.

HCCI 수소기관에서 운전영역확장을 위한 EGR 효과 분석 (An Analysis on the Effects of EGR to Extend Operation Region for a HCCI Hydrogen Engine)

  • 이건식;김진구;변창희;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제26권6호
    • /
    • pp.560-566
    • /
    • 2015
  • HCCI (Homogeneous Charge Compression Ignition) hydrogen engine has relatively narrower operation range caused by knock occurrence due to the rapid pressure rising by using higher compression ratio. In this study, EGR as one of the countermeasure methods is considered to extend operation range of HCCI hydrogen engine. Also, the effects of hydrogen EGR are compared with the effects of EGR using hydrocarbon fuel. Hydrocarbon EGR is carried out by adding carbon dioxide to exhaust gas of HCCI hydrogen engine. As the results, EGR has positive effects on a HCCI hydrogen engine in reducing rate of pressure rise as same as the other engines used hydrocarbon fuels. However, the effects of hydrogen EGR are better than those of hydrocarbon EGR in decreasing minimum compression ratio and rate of pressure rise. When applying EGR to HCCI hydrogen engine by 20% rate, the rate of pressure rise decreases by 58% and it results in about 48% increase of the operation range in terms of supply energy.

엔진 실린더내 난류유동 측정과 정량화방법에 관한 연구 (A study on the measurement and characterization of tubulent flow inside an engine cylinder)

  • 강건용;엄종호;김용선
    • 오토저널
    • /
    • 제14권6호
    • /
    • pp.39-47
    • /
    • 1992
  • The engine combustion is one of the most important process affecting performance and emissions. One effective way to improve the engine combustion is to control motion of the charge inside a cylinder by means of optimum induction system design, because the flame speed is mainly determined by the turbulence in a gasoline engine. This paper describes the measurement and characterization of mean velocity and turbulence intensity inside the cylinder of a 4-valve gasoline engine using laser Doppler velocimeter(LDV) under motoring(non-firing) conditions. Since the measured LDV data in each cycle show small cycle variation during compression stroke in the tested engine, the mean velocity and turbulence intensity are calculated by ensemble averaging method neglecting cycle variation effects. In the ensemble averaging method, the effects of the calculation window, in which velocities are assumed as the same crank angle, on mean velocity and turbulence intensity are fully investigated. In addition, the effects of measuring point on the flow characteristics are studied. With large calculation window, the mean velocity is shown to be less sensitive with respect to crank angle and turbulence intensity decrease in its absolute amplitude. When the piston approch to the top dead center of compression, the turbulence intensity is found to be homogeneous in the cylinder.

  • PDF

COMBUSTION STABILITY OF DIESEL-FUELED HCCI

  • Shi, L.;Deng, K.;Cui, Y.
    • International Journal of Automotive Technology
    • /
    • 제8권4호
    • /
    • pp.395-402
    • /
    • 2007
  • Homogeneous Charge Compression Ignition (HCCI) shows great potential for low $NO_x$ emission but is hampered by the problem of no direct method to control the combustion process. Therefore, HCCI combustion becomes unstable easily, especially at lower and higher engine load. This paper presents a method to achieve diesel-fueled HCCI combustion, which involves directly injecting diesel fuel into the cylinder before the piston arrives at top dead center in the exhaust stroke and adjusting the valve overlap duration to trap more high temperature residual gas in the cylinder. The combustion stability of diesel-fueled HCCI combustion and the effects of engine load, speed, and valve overlap on it are the main points of investigation. The results show that: diesel-fueled HCCI combustion has two-stage heat release rate (low temperature and high temperature heat release) and very low $NO_x$ emission, combustion stability of the HCCI engine is worse at lower load because of misfire and at higher load because of knock, the increase in engine speed aids combustion stability at lower load because the heat loss is reduced, and increasing negative valve overlap can increase in-cylinder temperature which aids combustion stability at lower load but harms it at higher load.

직접분사식 가솔린엔진의 분사 비율에 따른 연소특성에 관한 연구 (A Study on the Characteristics of Combustion according to Injection Strategy in DISI Engine)

  • 인병덕;박상기;이기형
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.68-76
    • /
    • 2012
  • Recently, the important issues of gasoline engine are to reduce the fuel consumption and emission. Thus, many researchers are studying the technology to solve these problems. One approach of these issues is to achieve homogeneous charge combustion and stratified change combustion with various injection strategy. In this study, the combustion characteristics of DISI engine accrding to injection strategy were examined. The effect of injection timing on lean limit A/F were investigated using dual DISI single cylinder. The results show that the engine operation region of dual DISI type engine is larger than that of PFI and DISI type engine cases. Especially, late injection is very effective to extend the operation region more than any other injection timings. In addition, the results show that when the DISI injection ratio is increase, leam limit A/F is improved. It means that the dual injection system car meet with emission regulations and reduce the fuel consumption. Also, combustion pressure of dual injection system is much higher than PFI and DISI injection.

북한 전통의학의 시대적 발전과정 및 의료체계 (The transition and medical system of Traditional Medicine in North Korea)

  • 한창현;박선희;신미숙;최선미
    • 한국한의학연구원논문집
    • /
    • 제13권2호통권20호
    • /
    • pp.37-45
    • /
    • 2007
  • Background : The 'Korean Medicine' is the traditional medicine in Korea, which has preserved its homogeneous quality in the long historic period. But since 1945 when Korea was divided, the Korean Medicine has also been independently developed in South and North Korea. As a Result, it has lost its national homogeneity. Objective : In order to illuminate the past and an actuality of the transition and medical system of traditional medicine in North Korea. Method : Overview a preceding research paper and the various data of traditional medicine in North Korea. Result : 1. The name of North Korea traditional medicine from 'East medicine' was changed history with 'Korean medicine', It with the method which combines a traditional medicine and a Western medicine is endeavoring to modernization. 2. The administrative systems which take charge of the traditional medicine of North Korea are the organization which manages the Korean medicine and the Bureau of The Korean medicine production control. Also there is relation of the Bureau of the treatment prevention. 3. There are 8 medical colleges other than P'yongyang medical college. There is 6 years 6 months and 7 years 7 month follows in curriculum. Conclusions : It evaluated the past and an actuality of the transition and medical system of traditional medicine in North Korea.

  • PDF

압축착화 디젤엔진의 연소위상 검출방법에 관한 연구 (Study on Detection of Combustion Phase in Compression Ignition Diesel Engine)

  • 김승관;박효원;최성철;조성인;박수한
    • 융복합기술연구소 논문집
    • /
    • 제9권1호
    • /
    • pp.13-19
    • /
    • 2019
  • The purpose of this study is to suggest a new method to determine a combustion phase (start of combustion and end of combustion) using a combustion pressure data. Unlike previous research method that used heat release amount, the difference between the combustion pressure measured in the combustion chamber and the motoring pressure was used to determine the combustion phase. This research was conducted using a single-cylinder diesel engine with a compression ratio of 17.7. The test was conducted under various injection timing. The newly proposed method showed high accuracy in combustion mode with early injection, as well as the conventional combustion mode. It is expected that this method will be used to study new combustion strategies such as HCCI (homogeneous charge compression ignition) and RCCI (reactivity controlled compression ignition) that are applying early injection strategies as well as existing combustion modes.

급속압축장치를 이용한 노말헵탄.이소옥탄 혼합연료의 HCCI 연소특성에 대한 연구 (Experimental Study on HCCI Combustion Characteristics of n-heptane and iso-octane Fuel/air Mixture by using a Rapid Compression Machine)

  • 임옥택
    • 한국분무공학회지
    • /
    • 제16권4호
    • /
    • pp.167-175
    • /
    • 2011
  • The HCCI engines have been known with high efficiency and low pollution and can be actualized as the new internal combustion engines. However, As for(??) the ignition and combustion depend strongly on the oxidation reaction of the fuel, so it is difficult to control auto-ignition timing and combustion duration. Purpose of this paper is creating the database for development of multi-dimensional simulation and investigating the influence of different molecular structure. In this research, the effect of n-heptane mole ratio in fuel (XnH) on the ignition delay from homogeneous charge compression ignition(HCCI) has been investigated experimentally. By varying the XnH, it was possible to ascertain whether or not XnH is the main resource of ignition delay. Additionally, the information on equivalence ratio for varying XnH was obtained. The tests were performed on a RCM (Rapid Compression Machine) fueled with n-heptane and iso-octane. The results showed that decreasing XnH (100, 30, 20, 10,0), the ignition delays of low temperature reaction (tL) and high temperature reaction (tH) is longer. And the temperature of reaction increases by about 30K. n-heptane partial equivalence ratio (fnH) affect on tL.and TL. When ${\phi}$nH was increased as a certain value, tL was decreased and TL was increased.

온도 성층화를 이용한 DME HCCI 엔진의 운전 영역 확장에 관한 수치해석 연구 (Prediction of the Viable Operating Range of DME Heel Engine Using Thermal Stratification Based on Numerical Analysis)

  • 정동원;권오석;백영순;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제20권4호
    • /
    • pp.344-351
    • /
    • 2009
  • A multi-zone model was used to predict the operating range of homogeneous charge compression ignition (HCCI) engine, the boundaries of the operating range were determined by knock (presented by ring intensity), misfire (presented by sensitivity of indicated mean effective pressure to the initial temperature). A HCCI engine fueled with Di-Methyl Ether (DME) was simulated under different initial temperature and equivalence ratios, and the operating range was well produced by the model. Furthermore, the model was applied to develop the operating range for thermal stratification in the preceding condition of initial temperature and equivalence ratios. The computations were conducted using Senkin application of the CHEMKINII kinetics rate code.