• Title/Summary/Keyword: homoarginine

Search Result 6, Processing Time 0.02 seconds

Studies on Heated Protein Quality Using Homoarginine Method

  • Lee, Kyung--Hee;Hel
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.1
    • /
    • pp.10-15
    • /
    • 1996
  • To determine the quality of heated protein, in vitro method, invluding lysine, lysionalanine, and fructose-lysine as well as homoarginine by guanidination of lysine, was assessed using heated casein with of without glucose. In vivo methods such as PER, digestibility and BV were also tried on homoarginine, lysinoalanine, fructoselysine, and lysine. The nonreactive lysine for huanidination was hardly digestive, while the non heat damaged lysine side chanis in the protein were accessible for guanidination as well as for the digestion. A linear correlation(${\gamma}$=0.80) was obstained between PER and digestibility of the analysed lysine. Digestibility of homoarginine was higher that of true protein. However, in the guanidinated heated casein with glucose, digestibility of homoarginine was significantly reduced. It is suggested that the homoarginine method may mislead to over- or underestimation of the damaged protein quality.

  • PDF

Effects of Guanidination with Trypsin, Lys-C, or Glu-C Digestion on Mass Spectrometric Signal Intensity and Protein Sequence Coverage

  • Han, Hye-Sun;Nho, Seon-Ho;Lee, Ae-Ra;Kim, Jeong-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1527-1534
    • /
    • 2010
  • The conventional peptide modification process of guanidination, in which the amino groups of lysine residues are converted to guanidino groups using O-methylisourea to create more basic homoarginine residues, is often used to improve the signal intensity of lysine-containing peptides in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Here, we used three different protease enzymes (trypsin, Lys-C, and Glu-C) to evaluate the effects of guanidination on the MS signals of two enzymatically digested proteins. Horse heart myoglobin and bovine serum albumin were guanidinated either before or after digestion with trypsin, Lys-C, or Glu-C. The resulting peptides were subjected to MALDI-MS, and signal intensities and sequence coverage were systematically evaluated for each digest. Guanidination prior to Glu-C digestion improved sequence coverage for both proteins. For myoglobin, guanidination before enzymatic digestion with trypsin or Lys-C also enhanced sequence coverage, but guanidination after enzymatic digestion enhanced sequence coverage only with Lys-C. For albumin, guanidination either before or after Glu-C digestion increased sequence coverage, whereas pre- or post-digestion guanidination decreased sequence coverage with trypsin and Lys-C. The amino acid composition of a protein appears to be the major factor determining whether guanidination will enhance its MALDI-MS sequence coverage.

Purification and Some Properties of Arginine Deiminase in Euglena gracilis Z (Euglena gracilis Z로부터 Arginine Deiminase의 정제 및 그의 특성)

  • Park, Bong-Sun;Hirotani, Aiko;Nakano, Yoshihisa;Kitaoka, Shozaburo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.1 no.1
    • /
    • pp.115-125
    • /
    • 1993
  • In Euglena gracilis arginine deiminase was located in the mitochondrial matrix. The highly purified enzyme required $Co^{2+}$ for the enzyme reaction with the $K_m$ value of 0.23 nM, and its optimum pH was 9.7 to 10.3. The molecular weight of the native enzyme protein was 87,000 by gel filtration, and SDS-acrylamide gel electrophoresis showed that the enzyme consisted of two identical subunits with a molecular weight of 48,000. Euglena arginine deiminase was inhibited by sulfhydryl inhibitors, indicating that a sulfhydryl group is involved in the active center of the enzyme. It exhibited negative cooperativity in binding with arginine. $L-{\alpha}-amino-{\beta}-guanidino-propionate$, D-arginine, and L-homoarginine strongly inhibited the enzyme while ${\beta}-guanidinopro-pionate$, ${\gamma}-guanidinobutyrate$, and guanidinosuccinate did not. Considerable inhibition was also observed with citrulline and ornithine. We discuss the effects of the unique properties of the Euglena arginine deiminase on the regulation of arginine metabolism in this protozoon.

  • PDF

Wheat phytase can alleviate the cellular toxic and inflammatory effects of lipopolysaccharide

  • An, Jeongmin;Cho, Jaiesoon
    • Journal of Animal Science and Technology
    • /
    • v.63 no.1
    • /
    • pp.114-124
    • /
    • 2021
  • The objective of this study was to characterize the enzymatic hydrolysis of lipopolysaccharide (LPS) by wheat phytase and to investigate the effects of wheat phytase-treated LPS on in vitro toxicity, cell viability and release of a pro-inflammatory cytokine, interleukin (IL)-8 by target cells compared with the intact LPS. The phosphatase activity of wheat phytase towards LPS was investigated in the presence or absence of inhibitors such as L-phenylalanine and L-homoarginine. In vitro toxicity of LPS hydrolyzed with wheat phytase in comparison to intact LPS was assessed. Cell viability in human aortic endothelial (HAE) cells exposed to LPS treated with wheat phytase in comparison to intact LPS was measured. The release of IL-8 in human intestinal epithelial cell line, HT-29 cells applied to LPS treated with wheat phytase in comparison to intact LPS was assayed. Wheat phytase hydrolyzed LPS, resulting in a significant release of inorganic phosphate for 1 h (p < 0.05). Furthermore, the degradation of LPS by wheat phytase was nearly unaffected by the addition of L-phenylalanine, the inhibitor of tissue-specific alkaline phosphatase or L-homoarginine, the inhibitor of tissue-non-specific alkaline phosphatase. Wheat phytase effectively reduced the in vitro toxicity of LPS, resulting in a retention of 63% and 54% of its initial toxicity after 1-3 h of the enzyme reaction, respectively (p < 0.05). Intact LPS decreased the cell viability of HAE cells. However, LPS dephosphorylated by wheat phytase counteracted the inhibitory effect on cell viability. LPS treated with wheat phytase decreased IL-8 secretion from intestinal epithelial cell line, HT-29 cell to 14% (p < 0.05) when compared with intact LPS. In conclusion, wheat phytase is a potential therapeutic candidate and prophylactic agent for control of infections induced by pathogenic Gram-negative bacteria and associated LPS-mediated inflammatory diseases in animal husbandry.

Wheat phytase potentially protects HT-29 cells from inflammatory nucleotides-induced cytotoxicity

  • Jeongmin An;Jaiesoon Cho
    • Animal Bioscience
    • /
    • v.36 no.10
    • /
    • pp.1604-1611
    • /
    • 2023
  • Objective: The aim of this study was to investigate the protective effect of wheat phytase as a structural decomposer of inflammatory nucleotides, extracellular adenosine triphosphate (ATP), and uridine diphosphate (UDP) on HT-29 cells. Methods: Phosphatase activities of wheat phytase against ATP and UDP was investigated in the presence or absence of inhibitors such as L-phenylalanine and L-homoarginine using a Pi Color Lock gold phosphate detection kit. Viability of HT-29 cells exposed to intact- or dephosphorylated-nucleotides was analyzed with an EZ-CYTOX kit. Secretion levels of pro-inflammatory cytokines (IL-6 and IL-8) in HT-29 cells exposed to substrate treated with or without wheat phytase were measured with enzyme-linked immunosorbent assay kits. Activation of caspase-3 in HT-29 cells treated with intact ATP or dephosphorylated-ATP was investigated using a colorimetric assay kit. Results: Wheat phytase dephosphorylated both nucleotides, ATP and UDP, in a dose-dependent manner. Regardless of the presence or absence of enzyme inhibitors (L-phenylalanine and L-homoarginine), wheat phytase dephosphorylated UDP. Only L-phenylalanine inhibited the dephosphorylation of ATP by wheat phytase. However, the level of inhibition was less than 10%. Wheat phytase significantly enhanced the viability of HT-29 cells against ATP- and UDP-induced cytotoxicity. Interleukin (IL)-8 released from HT-29 cells with nucleotides dephosphorylated by wheat phytase was higher than that released from HT-29 cells with intact nucleotides. Moreover, the release of IL-6 was strongly induced from HT-29 cells with UDP dephosphorylated by wheat phytase. HT-29 cells with ATP degraded by wheat phytase showed significantly (13%) lower activity of caspase-3 than HT-29 cells with intact ATP. Conclusion: Wheat phytase can be a candidate for veterinary medicine to prevent cell death in animals. In this context, wheat phytase beyond its nutritional aspects might be a novel and promising tool for promoting growth and function of intestinal epithelial cells under luminal ATP and UDP surge in the gut.

Follow Up Expression Patterns of Alkaline Phosphatase(AP) as a Marker for Establishing Mouse Embryonic Stem (ES) Cells (배아주간세포수립을 위한 Alkaline Phosphatase(AP)의 상이한 발현 양식의 추적)

  • 김진회;차수경;노민경;송상진;구덕본;이훈택;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.19 no.1
    • /
    • pp.55-63
    • /
    • 1995
  • The putative totipotency germ cells has a relative abundance of alkaline phosphatases. Thus, histological staining of AP activity offers a new route to isolate totipotent cells and also provides insights into culture systems of these cells. Furthermore, the AP staining technique is simple and fast, requires only the napthol AS/MS substrate in combination with trapping diazonium salts such as fast red or fast blue. However, our unexpected finding was that AP staining of mouse ES cells were detected in the undifferentiaed epiblast-derived cells as well as several types of differentiating cells. This findings are different from results of Talbot et al. (1993) reported usefulness of the AP staining and implies that histological staining of AP may not by useful to determine undifferentiaed state or totipotency of ES cells. Thus, we have investigated the patterns of AP expression by RT-PCR in order to identify a marker of undifferentiated ES/primordial germ (PG) cells. In RT-PCR analysis, embryonic (E)-AP was detected only in undifferentiated ES cells, but intestinal(I)-AP was not detected in all of the examined ES and PG cells. In addition, nonspecific (NS)-AP wasdetected in undifferentiated PG cell from day 7, 5 to 13 of gestation. Histological activity of AP in ES cells was completely suppressed by addition of L-phenylalanine (Phe), L-homoarginine (Har), and L-phenylalanylglycylglycine (PheGlyGly) as an inhibitor, but RT-PCR showed the same results as in the absence of an inhibitors. Our findings suggested that expression of E-AP and NS-AP may use as a marker to determine the undifferentiated status in ES and PG cells.

  • PDF