The purpose of this study is to compare and analyze the perception of men's fashion before and after the COVID-19 pandemic. TEXTOM allowed the collection of Big Data based on the term 'men's fashion'. As for the data collection periods, Jan. 1, 2018 to Dec. 31, 2019 was set as the pre-COVID-19 era, while Jan. 1, 2020 to Dec. 31, 2021 was set as the post-COVID-19 era. The top 50 words in terms of appearance frequency were extracted from the data. The extracted words were processed using network centrality analysis and CONCOR analysis using Ucinet 6. Research findings were as follows. 1) In the pre-COVID-19 era, the appearance frequency of 'men' was the highest, followed by 'fashion', 'men's fashion', 'brand', 'daily look', 'suit', and 'department store'. These words came up with a high TF-IDF values. Network centrality analysis discovered that 'men', 'fashion', 'men's fashion', 'brand', and 'suit' had a high level of connectivity with other words. CONCOR analysis showed four significant groups: 'fashion item and styles', 'fashion show', 'purchase', and 'collection'. 2) In the post-COVID-19 era, the appearance frequency of 'men' was the highest, followed by 'fashion', 'brand', 'men's fashion', 'discount', 'women', and 'luxury'. These words also displayed high TF-IDF values. Network centrality analysis found that 'fashion', 'men', 'brand', 'men's fashion', and 'discount' had a high level of connectivity with other words. CONCOR analysis showed four significant groups: 'fashion item and style', 'fashion show', 'purchase', and 'situation'. 3) Before the outbreak of the pandemic, men were interested in suits to wear to the office, daily look, and fashion shows in Milan and Paris. They often purchased menswear in multi-brand and open stores. However, they were more interested in sneakers, casual styles, and online fashion shows as social distancing and working from home became common. Most purchased menswear through online platforms.