• Title/Summary/Keyword: hollow-fiber

Search Result 631, Processing Time 0.026 seconds

Localized Eigenmodes in a Triangular Multicore Hollow Optical Fiber for Space-division Multiplexing in C+L Band

  • Hong, Seongjin;Oh, Kyunghwan
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.226-232
    • /
    • 2018
  • We propose a triangular-multicore hollow optical fiber (TMC-HOF) design for uncoupled mode-division and space-division multiplexing. The TMC-HOF has three triangular cores, and each core has three modes: $LP_{01}$ and two split $LP_{11}$ modes. The asymmetric structure of the triangular core can split the $LP_{11}$ modes. Using the proposed structures, nine independent modes can propagate in a fiber. We use a fully vectorial finite-element method to estimate effective index, chromatic dispersion, differential group delay (DGD), and confinement loss by controlling the parameters of the TMC-HOF structure. We confirm that the proposed TMC-HOF shows flattened chromatic dispersion, low DGD, low confinement loss, low core-to-core crosstalk, and low crosstalk between adjacent modes. The proposed TMC-HOF can provide a common platform for MDM and SDM applications.

Sound Pressure Sensitivity Variation of the Hollow Cylinder Type Sagnac Fiber Optic Sensor According to the Mandrel Install Direction and Its Material (Sagnac형 광섬유 센서를 이용한 중공 원통형 맨드릴의 재료 및 설치 방향에 따른 음압 감지 변화 연구)

  • Lee, Jong-Kil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.626-633
    • /
    • 2012
  • In this paper, sound pressure sensitivity of the fiber optic acoustic sensor according to sensor direction and mandrel material were investigated experimentally. Three different directions were selected as stand, lay, and hole. Hollow cylinder type mandrel dimension is 30 mm in outer diameter, 45 mm in length, and 2 mm in thickness, and about 50 m optical fibers were wounded on the surface of the mandrel. Non-directional sound speaker was used as a sound source. Sagnac interferometer and single mode fiber, a laser with 1,550 nm in wavelength, $2{\times}2$ coupler were used. Based on the experimental results, lay direction's sensitivity is the highest in the frequency range of 2 kHz~4 kHz. 'PTFE+carbon' material is more sensitive than PTFE in the frequency range of 5 kHz~20 kHz. Sound pressure detection sensitivity depends on the mandrel direction and material under certain frequency.

A Study on the Standardization of Fineness Measurement for the Thermal Insulator of Military Textiles (방한용 화섬솜의 섬도 측정방법의 표준화에 관한 연구)

  • Hong, Seong-don;Kim, Byung-soon
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.3
    • /
    • pp.253-272
    • /
    • 2015
  • Purpose: The purpose of this study is to enhance the reliability of quality inspection by standardize the fineness test method of the thermal insulator of military textiles Methods: We have measured the thermal insulator of military textiles by microscope with three different ways and the effectiveness of their difference were analyzed by one-way layout design. Results: We have suggest the standardized the fineness test method of the thermal insulator of military textiles through advanced research. As a result we have verified hollow ratio of heat insulating fiber affect fineness test methods. The fineness test method for the thermal insulator applied with different methods following hollow ratio. We have verified that when the hollow ratio over 90%, the fineness of the thermal insulator measured from fiber-length, if it has over 80%, the cross-section length of hollow and if it has less 80%, the cross-section area of hollow is applied, respectively. Conclusion: This study indicated that the test method of fineness shows high reliability. Heat insulating fibers which have high evenness shows narrow variations(5/% or less, only CV 25%) irrespectively under different testing equipment or institute. Based ons the results, we have suggest the standardization of test methods for fineness by microscope method and produced the registration of Group Standard in Korean Standards Association.

Design and Filtration Performance of Polysulfone Hollow Fiber Membrane Hemofilter (폴리설폰 중공사막 혈액여과기의 설계 및 여과성능)

  • 김재진;박진용
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.227-234
    • /
    • 1993
  • Hemofilter was optimally designed and manufactured using polysulfone hollow fiber mem- brane with surface area of 0.6mE Molecular weight cut-off of the hemofilter was measured with polyethylene glycol and dextran aqueous solutions of various molecular weights and it was ranged from 9,500 to 38,900. Ultrafiltration rates were measured with pure water in a static system and flowing system. The clearance of urea, creatinlne, and vitamine BIB were measured using aqueous solutions.

  • PDF

Effective Water Treatment Process by Hollow Fiber MF Membranes; VAS(Vibrating & Stripping by Air ) Process (에너지절약형 VSA MF Membrane 수처리 시스템)

  • 김정학
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.93-116
    • /
    • 1999
  • MF membrane element was specially designed for water purification and VSA process which can solve the fouling problem. Especially VSA process is developed for the SK Chemicals' asymmetric microfiltration hollow fiber membranes. In case of outside-to-in filtration process, MF membrane element showed the excellent flux stability caused by cleaning ability of VSA process . Simultaneous back-washing with VSA consideratbly enhances cleaning efficiency. From the result the possibility of the replacement of chemical coagulation and sand filtration process with newly developed VSA process was revealed.

  • PDF

Preparation of a ultrathin hollow fiber ceramic microfiltration membrane (초극세 중공사형 세라믹 정밀여과막 제조)

  • Park, In-Hwan;Kim, In-Chul;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.144-146
    • /
    • 2004
  • Various polymeric hollow fiber membranes have been prepared and been used widely due to their high surface area per unit volume and high permselectivity. However, the organic materials are only limited to mild operating conditions because of their weak thermal stability and ease of fouling.(omitted)

  • PDF

EFFECTIVE WATER TREATMENT PROCESS BY HOLLOW FIBER MEMBRANES : VAS (VIBRATING & STRIPPING BY AIR) PROCESS

  • Kim, Jeong-Hak
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.63-66
    • /
    • 1999
  • MF membrane element was specially designed for water purification and VSA process which can solve the fouling problem. Especially VSA process is developed for the SK Chemical's asymmetric microfiltration hollow fiber membranes. In case of outside-to-in filtration process, MF membrane element showed the excellent flux stability caused by cleaning ability of VSA process. Simultaneous back- washing with VSA considerably enhances cleaning efficiency. Form the result, the possibility of the replacement of chemical coagulation and sand filtration process with newly developed VSA process was revealed.

  • PDF

Influences of solvent-exchange drying on the properties of cellulose hollow fiber membranes

  • Jie, Xingming;Cao, Yiming;Wu, Ming;Yuan, Quan
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.69-69
    • /
    • 2004
  • Cellulose hollow fiber membranes (CHFM) were prepared from the cellulose/N-methylmorpholine-N-oxide/$H_2O$ system by immersion-precipitation and wet spinning. Different drying methods were carried out to investigate their influences on the properties of CHFM.(omitted)

  • PDF

Fiber-Optic Inteferometric Voltage Sensor using a Hollow Fiber (중공 광섬유를 이용한 광섬유 간섭계형 전압센서)

  • Bae, Jeung-Hwan;Park, Jae-Hee;Kim, Kyung-Chan;Kim, Kwang-Taek;Han, Won-Taek
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.1
    • /
    • pp.15-19
    • /
    • 2008
  • A fiber-optic interferometric voltage sensor with high sensitivity is investigated. The fiber-optic voltage sensor is composed of an In-Line Michaelson interferometer bonded on a PZT. The In-Line Michaelson interferometer is a hollow optical fiber spliced to a single-mode fiber at one end and cleaved at the other end. The phase shift of the sensor output signal was induced by the applied AC voltage. The relation between the amplitude of the applied voltage and the phase shift of the sensor output signal was approximately linear and the sensitivity was $0.065{\pi}$ radian/V.

Characteristics Investigation and Design of the Mandrel for Fiber Optic Acoustic Sensor (광섬유 음향 센서용 맨드릴 설계 및 특성 연구)

  • Lee, Jongkil;Ha, Tae-Hyun;Lee, June-Ho
    • 대한공업교육학회지
    • /
    • v.34 no.2
    • /
    • pp.331-345
    • /
    • 2009
  • In this research Sagnac interferometer three different types of mandrel are suggested and this fiber optic sensor is using in monitoring of electric transformer. Vibration characteristics of those mandrels were analyzed and finally more sensitivity mandrel are suggested. Three different mandrels using in fiber optic sensor are hollow cylinder with outer bump, pure hollow cylinder, hollow cylinder with inner bump. Natural frequencies and mode shapes are investigated using finite element method. Mode shape are considered at the frequency range from 2 kHz to 20 kHz. Fundamental dimensions of the hollow cylinder type's mandrel are 30 mm in outer diameter, 50 mm in length, 1 mm in cylinder thickness, $2mm{\times}2mm$ in bump size. Based on the finite element results, when the outer acoustic frequency is near 11 kHz outer bump type and hollow cylinder can get higher sensitivity. Near 17 kHz outer bump and inner bump mandrel can get higher sensitivity. Near 20 kHz hollow cylinder and inner bump mandrel is useful. This results can be applied to design of fiber optic sensor using in monitoring the electrical transformer. Several MHz of outer acoustic frequency can be easily detected using more sensitive mandrel in pursuing expand this technique.