• Title/Summary/Keyword: hollow-core slabs

Search Result 29, Processing Time 0.023 seconds

An experimental Study on the Structural Performance Evaluation of One-way Hollow Core Slab (일방향 중공 슬래브의 구조성능 평가에 대한 실험적 연구)

  • Kim, Dong Baek;Song, Dae Gyeom;Choi, Jung Ho;Cho, Hyun Sang
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.343-351
    • /
    • 2018
  • Purpose: Recently, As the size of the structure increased, the necessity of reducing its weight was raised. To reduce weight In concrete structures, a hollow slab is proposed as an alternative for weight reduction effect. Method: It is difficult to construct the hollow body due to buoyancy, and the shear performance is insufficient due to the decreased cross section. Slabs were fabricated using unidirectional hollow bodies such as PVC pipes, and experiments were conducted about construction performance and structural performance. Results: The buoyancy preventive device has been improved the construction performance by preventing floating hollow body, it has been confirmed that it has adequate performance to be used as a hollow slab system because it has enough expected shear performance. Coclusion: Hollow ratio has a little connection with bending performance, but after the yielding load, it is necessary to consider the secondary stiffness of structure, and is is supposed that the decrease of shear performance with the increase of hollow core ratio can be complemented with shear reinforcement.

Experimental Study on the Development of Void Precast Concrete Slab using Rubber Tube Mold for Inner Core (고무튜브 몰드 프리캐스트 콘크리트 유공 슬래브 개발에 관한 실험적 연구)

  • Bae, Kyu-Woong;Hong, Sung-Yub
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.4
    • /
    • pp.293-303
    • /
    • 2021
  • The void PC slab has a structurally reasonable cross-section by forming the hollow section of the neutral axis that is unnecessary for bending behavior. Domestic PC factories have introduced automation equipment to produce hollow PC slabs, and are achieving hollow sections through inserts. However, since the excessive initial investment cost of the PC factory is the main factor in the increase in production cost, other alternatives are needed. Therefore, in this study, when producing hollow PC slab members, by using a rubber tube as a formwork to form an internal hollow space, it is intended to contribute to securing productivity through molding various hollow shapes, making it larger, lightweight, and enabling rapid production. To implement a hollow PC slab using a rubber tube mold, the shape of a hollow cross-section in which the tube is combined was implemented by considering the shape of the rubber tube first. In addition, to secure the concrete quality of the hollow part, the finish properties of the rubber tube mold and concrete were evaluated, and the hollow PC production process was established.

Web-shear capacity of prestressed hollow-core slab unit with consideration on the minimum shear reinforcement requirement

  • Lee, Deuck Hang;Park, Min-Kook;Oh, Jae-Yuel;Kim, Kang Su;Im, Ju-Hyeuk;Seo, Soo-Yeon
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.211-231
    • /
    • 2014
  • Prestressed hollow-core slabs (HCS) are widely used for modern lightweight precast floor structures because they are cost-efficient by reducing materials, and have excellent flexural strength and stiffness by using prestressing tendons, compared to reinforced concrete (RC) floor system. According to the recently revised ACI318-08, the web-shear capacity of HCS members exceeding 315 mm in depth without the minimum shear reinforcement should be reduced by half. It is, however, difficult to provide shear reinforcement in HCS members produced by the extrusion method due to their unique concrete casting methods, and thus, their shear design is significantly affected by the minimum shear reinforcement provision in ACI318-08. In this study, a large number of shear test data on HCS members has been collected and analyzed to examine their web-shear capacity with consideration on the minimum shear reinforcement requirement in ACI318-08. The analysis results indicates that the minimum shear reinforcement requirement for deep HCS members are too severe, and that the web-shear strength equation in ACI318-08 does not provide good estimation of shear strengths for HCS members. Thus, in this paper, a rational web-shear strength equation for HCS members was derived in a simple manner, which provides a consistent margin of safety on shear strength for the HCS members up to 500 mm deep. More shear test data would be required to apply the proposed shear strength equation for the HCS members over 500 mm in depth though.

Construction Safety Evaluation of Local Bearing Strength of Hollow Core Slab (중공 슬래브의 국부지압강도에 대한 시공안전성 평가)

  • Hur, Moo-Won;Yoon, Jeong-Hwan;Hwang, Kyu-Seok;Yoon, Sung-Ho;Park, Tae-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.8-15
    • /
    • 2018
  • Hollow Core Slab is a very efficient system that can reduce weight and its use has increased. Void slab is a concrete slab that has voids substituted with void material. Because of its saved volume of concrete, void slab can reduce weight of slabs. Also, it can't only save concrete but also can reduce carbon-emission. However, because of the unclear bearing strength at the part of void substituted with voiding material, several problems occur in constructing field. In this study, void slab including void material was built and local bearing strength test was carried out for 3 types of load(truck load, support load and Jack support load). As a result, bearing strength of void neck and upper void material is more than allowable load. And also, bearing strength of specimens with using deck and not using deck are also over allowable loads.

Evaluation of Structural Performance of Precast Prestressed Hollow-Core Slabs with Shear Reinforcement (전단철근이 배치된 프리캐스트 프리스트레스트 중공슬래브의 구조성능 평가)

  • Sang-Yoon Kim;Seon-Hoon Kim;Deuck-Hang Lee;Sun-Jin Han;Kil-Hee Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.71-77
    • /
    • 2023
  • This study aims to investigate the structural performance of hollow-core slab (HCS) memebers with 400 mm thickness. To this end, a total of four HCS specimens were fabricated based on the individual mold method to provide shear reinforcement, unlike the extrusion method. The key variables were chosen as the presence of topping concrete, core-filling concrete, and shear reinforcements. The crack patterns and load-displacement responses of the test specimens were analyzed in detail. Test results showed that inclined shear cracking occurred all the specimens, and that the specimen with shear reinforcement on the web of HCS unit had higher strength and ductility than the specimen without shear reinforcement. In particular, shear reinforcements placed on the web of HCS unit effectively resisted not only to vertical shear force but also to horizontal shear force between the interface of HCS unit and topping concrete. In addition, it was discovered that the method in which shear reinforcements are placed on the web of HCS unit is more effective in improving structural performance than core-filling method.

Modelling headed stud shear connectors of steel-concrete pushout tests with PCHCS and concrete topping

  • Lucas Mognon Santiago Prates;Felipe Piana Vendramell Ferreira;Alexandre Rossi;Carlos Humberto Martins
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.451-469
    • /
    • 2023
  • The use of precast hollow-core slabs (PCHCS) in civil construction has been increasing due to the speed of execution and reduction in the weight of flooring systems. However, in the literature there are no studies that present a finite element model (FEM) to predict the load-slip relationship behavior of pushout tests, considering headed stud shear connector and PCHCS placed at the upper flange of the downstand steel profile. Thus, the present paper aims to develop a FEM, which is based on tests to fill this gap. For this task, geometrical non-linear analyses are carried out in the ABAQUS software. The FEM is calibrated by sensitivity analyses, considering different types of analysis, the friction coefficient at the steel-concrete interface, as well as the constitutive model of the headed stud shear connector. Subsequently, a parametric study is performed to assess the influence of the number of connector lines, type of filling and height of the PCHCS. The results are compared with analytical models that predict the headed stud resistance. In total, 158 finite element models are processed. It was concluded that the dynamic implicit analysis (quasi-static) showed better convergence of the equilibrium trajectory when compared to the static analysis, such as arc-length method. The friction coefficient value of 0.5 was indicated to predict the load-slip relationship behavior of all models investigated. The headed stud shear connector rupture was verified for the constitutive model capable of representing the fracture in the stress-strain relationship. Regarding the number of connector lines, there was an average increase of 108% in the resistance of the structure for models with two lines of connectors compared to the use of only one. The type of filling of the hollow core slab that presented the best results was the partial filling. Finally, the greater the height of the PCHCS, the greater the resistance of the headed stud.

An experimental study of the behaviour of double sided welded plate connections in precast concrete frames

  • Gorgun, Halil
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.1-22
    • /
    • 2018
  • Multi-storey precast concrete skeletal structures are assembled from individual prefabricated components which are erected on-site using various types of connections. In the current design of these structures, beam-to-column connections are assumed to be pin jointed. Welded plate beam to-column connections have been used in the precast concrete industry for many years. They have many advantages over other jointing methods in component production, quality control, transportation and assembly. However, there is at present limited information concerning their detailed structural behaviour under bending and shear loadings. The experimental work has involved the determination of moment-rotation relationships for semi-rigid precast concrete connections in full scale connection tests. The study reported in this paper was undertaken to clarify the behaviour of such connections under symmetrical vertical loadings. A series of full-scale tests was performed on sample column for which the column geometry and weld arrangements conformed with successful commercial practice. Proprietary hollow core slabs were tied to the beams by tensile reinforcing bars, which also provide the in-plane continuity across the connections. The strength of the connections in the double sided tests was at least 0.84 times the predicted moment of resistance of the composite beam and slab. The secant stiffness of the connections ranged from 0.7 to 3.9 times the flexural stiffness of the attached beam. When the connections were tested without the floor slabs and tie steel, the reduced strength and stiffness were approximately a third and half respectively. This remarkable contribution of the floor strength and stiffness to the flexural capacity of the joint is currently neglected in the design process for precast concrete frames. In general, the double sided connections were found to be more suited to a semi-rigid design approach than the single sided ones. The behaviour of double sided welded plate connection test results are presented in this paper. The behaviour of single sided welded plate connection test results is the subject of another paper.

Flexural Behavior of Encased Composite Beams with Partial Shear Interaction (매립형 불완전 합성보의 휨 거동 예측)

  • Heo, Byung Wook;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.747-757
    • /
    • 2004
  • With steel and concrete composite beams, the incomplete interaction between the steel and the concrete slab leads to an appreciable increase in beam deflections. Moreover, encased composite beams using a deep deck plate or hollow-core PC slabs are critical to deflection due to their inherent geometry. In this paper, by using the calculation tools that were developed for a previous study on the deflection of encased composite beams considering the slip effects and load-slip curve, the shear bond stress and additional deflection induced due to interface slip of the encased composite beam are presented. It was found that the slip effects significantly contribute to the encased composite beam deflections and result in stiffness reduction of up to 30% compared to that of full shear interaction beams. The predicted results were compared with the measurement of 18 specimens tested in this study, and comparisons show a high degree of accuracy, within 6%.

An experimental study of the behaviour of double sided bolted billet connections in precast concrete frames

  • Gorgun, Halil
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.603-622
    • /
    • 2018
  • Precast concrete structures are erected from individual prefabricated components, which are assembled on-site using different types of connections. In the present design of these structures, beam-to-column connections are assumed pin jointed. Bolted billet beam to-column connections have been used in the precast concrete industry for many years. They have many advantages over other jointing methods in component production, quality control, transportation and assembly. However, there is currently limited information concerning their detailed structural behaviour under vertical loadings. The experimental work has involved the determination of moment-relative rotation relationships for semi-rigid precast concrete connections in full-scale connection tests. The study reported in this paper was undertaken to clarify the behaviour of such connections under symmetrical vertical loadings. A series of full-scale tests was performed on sample column for which the column geometry and bolt arrangements conformed to successful commercial practice. Proprietary hollow core floor slabs were tied to the beams by 2T25 tensile reinforcing bars, which also provide the in-plane continuity across the connections. The contribution of the floor strength and stiffness to the flexural capacity of the joint is currently neglected in the design process for precast concrete frames. The flexural strength of the connections in the double-sided tests was at least 0.93 times the predicted moment of resistance of the composite beam and slab. The secant stiffness of the connections ranged from 0.94 to 1.94 times the flexural stiffness of the attached beam. In general, the double-sided connections were found to be more suited to a semi-rigid design approach than the single sided ones. The behaviour of double sided bolted billet connection test results are presented in this paper. The behaviour of single sided bolted billet connection test results is the subject of another paper.