• Title/Summary/Keyword: hollow fibers

Search Result 118, Processing Time 0.03 seconds

Analysis of Mechanical Behavior for a Pultruded-Wound Hollow Rod of Unsaturated Polyester Resin(UP) with Glass Fibers (인발-와인딩에 의한 불포화수지 섬유강화 중공봉의 기계적 거동해석)

  • Kim, Zoh-Gweon;Lin, Ye
    • Composites Research
    • /
    • v.14 no.6
    • /
    • pp.16-23
    • /
    • 2001
  • Analysis of mechanical behavior for a pultruded-wound hollow rod is presented. For this purpose, the pultruded-wound hollow rod is manufactured by the new winder attached to the conventional pultrusion system. And the conventional pultrusion process is newly altered to manufacture pultruded-wound specimens. A computer program, POST II, is modified to perform this study, In the nonlinear finite element formulation, the updated Lagrangian description method based on the second Piolar-Kirchhoff stress tensor and the Green strain tensor are used. For the finite element modeling of the composite hollow rod, the eight-node degenerated shell element is utilized. In order to estimate the failure, the maximum stress criterion is adopted to the averaged stress in the each layer of the finite elements. As numerical examples, the behavior of glass/up composite hollow rod is investigated from the initial loading to the final collapse. Present finite element results considering stiffness degradation and stress unload due to failure shows excellent agreement with experiments in the ultimate load, failure and deformations.

  • PDF

Enhancement of Mass Transfer Using Piezoelectric Material in Fluid Flow System

  • Kim, Gi-Beum;Chong, Woo-Suk;Kwon, Tae-Kyu;Hong, Chul-Un;Kim, Nam-Gyun;Jheong, Gyeong-Rak
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.165-170
    • /
    • 2004
  • The purpose of this work was to assess and quantify the beneficial effects of long-term gas exchange, at varying frequencies, for the development of a vibrating intravascular lung assistance device (VIVLAD), for patients suffering from acute respiratory distress syndrome (ARDS). The experimental design and procedure have been applied to the construction of a new device for assessing the effectiveness of membrane vibrations. An analytical solution has been developed for the hydrodynamics of flow through a bundle of sinusoidally vibrated hollow fibers, with the intention of gaining insight into how wall vibrations might enhance the performance of the VIVLAD. As a result, the maximum oxygen transfer rate was reached at the maximum amplitude and through the transfer of vibrations to the hollow fiber membranes. The device was excited by a frequency band of 7Hz at various water flow rates, as this frequency was the 2nd mode resonance frequency of the flexible beam. 675 hollow fiber membranes were also bundled, within the blood flow, into the device.

  • PDF

Liquid-liquid extraction process for gas separation from water in polymeric membrane: Mathematical modeling and simulation

  • Salimi, Nahid;Moradi, Sadegh;Fakhar, Afsaneh;Razavi, Seyed Mohammad Reza
    • Membrane and Water Treatment
    • /
    • v.7 no.5
    • /
    • pp.463-476
    • /
    • 2016
  • In this study, application of polypropylene hollow fiber membrane contactors for $CO_2$ removal from water in liquid-liquid extraction (LLE) mode was simulated. For this purpose, a steady state 2D mathematical model was developed. In this model axial and radial diffusion was considered to $CO_2$ permeation through the hollow fibers. $CO_2$ laden water is fed at a constant flow rate into the lumen side, permeated through the pores of membrane and at the end of this process, $CO_2$ solution in the lumen side was extracted by means of aqueous diethanolamine (DEA) and chemical reaction. The simulation results were validated with the experimental data and it was found a good agreement between them, which confirmed the reliability of the proposed model. Both simulation and experimental results confirmed the reduction in the percentage of $CO_2$ removal by increment of feed flow rate.

Sound Pressure Sensitivity Variation of the Hollow Cylinder Type Sagnac Fiber Optic Sensor According to the Mandrel Install Direction and Its Material (Sagnac형 광섬유 센서를 이용한 중공 원통형 맨드릴의 재료 및 설치 방향에 따른 음압 감지 변화 연구)

  • Lee, Jong-Kil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.626-633
    • /
    • 2012
  • In this paper, sound pressure sensitivity of the fiber optic acoustic sensor according to sensor direction and mandrel material were investigated experimentally. Three different directions were selected as stand, lay, and hole. Hollow cylinder type mandrel dimension is 30 mm in outer diameter, 45 mm in length, and 2 mm in thickness, and about 50 m optical fibers were wounded on the surface of the mandrel. Non-directional sound speaker was used as a sound source. Sagnac interferometer and single mode fiber, a laser with 1,550 nm in wavelength, $2{\times}2$ coupler were used. Based on the experimental results, lay direction's sensitivity is the highest in the frequency range of 2 kHz~4 kHz. 'PTFE+carbon' material is more sensitive than PTFE in the frequency range of 5 kHz~20 kHz. Sound pressure detection sensitivity depends on the mandrel direction and material under certain frequency.

Preparation and Characterization of Microfiltration Membrane by Metal Particles (금속입자를 이용한 정밀여과막 제조와 특성평가)

  • Kim, In-Chul;Lee, Kew-Ho;Park, Joo-Young;Jeong, Bo-Reum;Kwon, Ja-Young
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.381-386
    • /
    • 2007
  • Hollow fibers were made using the nickel slurry containing nickel particles and polymers by phase inversion method. And then, metallic filters were fabricated by sintering method at $1,150^{\circ}C$ under reduction condition. Metallic microfiltration membranes were prepared by coating nickel particles on the metallic filter. The properties of the metallic hollow fiber filters and microfiltration membranes such as pore size and strength were investigated. The metallic membrane showed good resistance against acid, base and chlorine. It was observed that the membrane exhibited good recovery rate by back washing.

Lightweight Characteristics and Sintering behavior of Porcelain by Addition FAHM(Fly-Ash Hollow Microsphere) (FAHM(Fly-Ash Hollow Microsphere)첨가에 의한 도자기의 소성특성과 경량화)

  • Kim, Geun-Hee;Pee, Jae-Hwan;Kim, Jong-Young;Cho, Woo-Seok;Kim, Kyeong-Ja
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.3
    • /
    • pp.228-235
    • /
    • 2011
  • Sintering behavior and lightweight characteristics of porcelain by addition of FAHM (Fly-Ash Hollow Microsphere) were evaluated. Green body of Backja composition (general porcelain) in which FAHM was added(15 and 20 wt%) was made by slip casting method. The green body was sintered at 1270 and $1290^{\circ}C$ and maintained for 1h. The bulk density and linear shrinkage of the sintered body with FAHM (20 wt%) decreased. As the contents of FAHM. increased, mullite and cristobalite phases increased. In the microstructure, FAHM shells remained after sintering, and the generation of mullite fibers around FAHM shells also were confirmed. the weight of porcelain with of 20% FAHM decreased by 40% and residual FAHM shells promoted the mullite of generation in the matrix.

Enhancement of Oxygen Transfer Efficiency Using Vibrating lung Assist Device in In-Vitro Fluid Flow (In-vitro 유동장에서 진동형 폐 보조장치를 이용한 산소전달 효율의 향상)

  • 권대규;김기범;이삼철;정경락;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1332-1335
    • /
    • 2003
  • This paper presents the enhancement of oxygen transfer efficiency using the vibrating intravascular lung assist device (VIVLAD) in in-vitro experiments for patients having chronic respiratory problems. The test section was a cylinder duct with the inner diameter of 30 mm. The flow rate was controlled by the pump and monitored by a built-in flow meter. The vibration apparatus was composed of a piezo-vibrator, a function generator. and a power amplifier. The direction of vibration was radial to the fluid flow. Gas flow rates of up to 6 l/min through the 120-cm-Jong hollow fibers have been achieved by exciting a piezo-vibrator. The output of PVDF sensor were investigated by various frequencies in VIVLAD. The experimental results showed that VIVLAD would be enhance oxygen transfer efficiency.

  • PDF

Study on the Separation of N2/SF6 Mixture Gas Using Polyimide Hollow Fiber Membrane (폴리이미드 중공사 막을 이용한 N2/SF6 혼합기체 분리에 관한 연구)

  • Kim, Dae-Hoon;Kim, Guang-Lim;Jo, Hang-Dae;Park, Jong-Soo;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.660-667
    • /
    • 2010
  • In this research polyimide, Matrimid 5218, hollow fiber membrane was used to recover sulfur hexafluoride($SF_6$) which is one of the six greenhouse gases from $N_2/SF_6$ mixture gas. Fibers were spun from using dry-wet phase inversion method. The module was manufactured by fabricating fibers after surface coating with silicone elastomer. The scanning electron microscopy(SEM) studies showed that the produced fibers typically had an asymmetric structure; a dense top layer supported by a sponge-like substructure. The developed module had a permeance of 0.78-1.36 GPU for $N_2$ with $N_2/SF_6$ selectivity of 2.44-5.08 at various pressure and temperature. For recovery of $SF_6$, a membrane module and 10 vol.% $SF_6$ from $N_2/SF_6$ mixture gas was used. The effects of various operating condition such as pressure, temperature, and retentate side flow rate were tested. When pressure and temperature were increased and retentate flow rate was decreased, the $SF_6$ purity in recovered gas was increased up to 37.5 vol.% with decreasing recovery ratio. When retentate flow rate was increased pressure and temperature was decreased, the $SF_6$ recovery ratio in retentate side was increased up to 89% with decreasing the $SF_6$ purity in retentate side.

Structural Analysis of a Cavitary Region Created by Femtosecond Laser Process

  • Fujii, Takaaki;Goya, Kenji;Watanabe, Kazuhiro
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.5-10
    • /
    • 2015
  • Femtosecond laser machining has been applied for creating a sensor function in silica glass optical fibers. Femtosecond laser pulses make it possible to fabricate micro structures in processed regions of a very thin glass fiber line because femtosecond laser pulses can extremely minimize thermal effects. With the laser machining to optical fiber using a single shot of 210-fs laser at a wavelength of 800 nm, it was observed that a processed region surrounded a thin layer which seemed to be a hollow cavity monitored by scanning electron microscopy (SEM). This study aims at a theoretical investigation for the processed region by using a numerical analysis in order to embed sensing function to optical fibers. Numerical methods based finite element method (FEM) has been used for an optical waveguide modeling. This report suggests two types modeling and describes a comparative study on optical losses obtained by the experiment and the numerical analysis.

Porous Ceramic Fibers: Materials and Applications

  • Kim, Il-Du
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.4-4
    • /
    • 2011
  • Extensive research efforts are directed toward the development of highly sensitive gas sensors using novel nanostructured materials. Among the different strategies for producing sensor devices based on nanosized building blocks, polymeric fiber templating approach which is combined by chemical and physical synthesis routes was attracted much attention. This unique morphology increases the surface area and reduces the interfacial area between film and substrate. Consequently, the surface activity is markedly enhanced while deleterious interfacial effects between film and substrate are significantly reduced. Both effects are highly advantageous for gas sensing applications. In this presentation, facile synthesis of hollow and porous metal oxide nanostructures and their applications in chemical sensors will be discussed.

  • PDF