• 제목/요약/키워드: hollow fibers

Search Result 118, Processing Time 0.023 seconds

Sound Characteristics according to Cross-sectional Shapes of Fibers

  • Kim, Chunjeong;Cho, Gilsoo;Hong, Kyoung A.;Shim, Hyun Joo
    • Fibers and Polymers
    • /
    • v.4 no.4
    • /
    • pp.199-203
    • /
    • 2003
  • In order to investigate the effects of cross-sectional shapes on the sound characteristics of polyester fibers, 10 specimens were woven into a twill structure made of round, hollow, triangular, u-shape, cruciform, and composite cross-sectional (▲/▲ ,()/▲, Y/Y) fibers. Their rustling sounds were recorded, and their sound spectra were obtained from FFT analysis. Physical sound parameters (LPT, ΔL, Δf) and Zwicker's psychoacoustic parameters of the loudness(Z), sharpness(Z), roughness(Z), and fluctuation strength(Z) were calculated from the sound spectra. According to noncircular cross-section fibers, the hollow shaped fiber had the highest value of LPT, ΔL, loudness(Z), and fluctuation strength(Z). The triangular shaped fiber had a lower value of LPT, ΔL, loudness(Z), and roughness(Z) than those of the round shaped fiber. Among composite cross-section fibers, C1(▲/▲) and C3 (Y/Y) had higher values of LPT, ΔL, Δf and loudness(Z) but C2(()/▲) had lower values. Also the LPT, ΔL, sharpness(Z), and roughness(Z) values of different denier were similar to each other, but the Δf and loudness(Z) values increased as the denier increased.

Experimental Study on GFRP Reinforcing Bars with Hollow Section (중공형 GFRP 보강근의 인장성능 실험연구)

  • You, Young-Jun;Park, Ki-Tae;Seo, Dong-Woo;Hwang, Ji-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.45-52
    • /
    • 2015
  • Fiber-reinforced polymer (FRP) has been generally accepted by civil engineers as an alternative for steel reinforcing bars (rebar) due to its advantageous specific tensile strength and non-corrosiveness. Even though some glass fiber reinforced polymer (GFRP) rebars are available on a market, GFRP is still somewhat uncompetitive over steel rebar due to their high cost and relatively low elastic modulus, and brittle failure characteristic. If the price of component materials of GFRP rebar is not reduced, it would be another solution to increase the performance of each material to the highest degree. The tensile strength generally decreases with increasing diameter of FRP rebar. One of the reasons is that only fibers except for fibers in center resist the external force due to the lack of force transfer and the deformation of only outer fibers by gripping system. Eliminating fibers in the center, which do not play an aimed role fully, are helpful to reduce the price and finally FRP rebar would be optimized over the price. In this study, the effect of the hollow section in a cross-section of a GFRP rebar was investigated. A GFRP rebar with 19 mm diameter was selected and an analysis was performed for the tensile test results. Parameter was the ratio of hollow section over solid cross-section. Four kinds of hollow sections were planned. A total of 27 specimens, six specimens for each hollow section and three specimens with a solid cross-section were manufactured and tested. The change by the ratio of hollow section over solid cross-section was analyzed and an optimized cross-section design was proposed.

Preparation of Titanium Carbide Fiber-Reinforced Alumina Ceramic Matrix Composites by Self-Propagating High-Temperature Synthesis

  • Yun, Jondo;Bang, Hwancheol
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.171-175
    • /
    • 1998
  • $Al_2O_3$-TiC composites were prepared from aluminum, titanium oxide, and carbon fibers by self-propagating high-temperature synthesis(SHS). After the SHS reaction, the TiC phase in the sample was found either fibrous or non-fibrous shape. The fraction of the fibrous TiC phase varied with the amount of $Al_2O_3$ diluent addition. The optimum amount of diluent to make fibrous carbide was determined to be 30%. The fibers were hollow inside and made of multiple grains with a composition of titanium carbide. The hollow fiber formation mechanism was suggested and discussed. The synthesized powders were consolidated to dense composites by hot pressing at $1750^{\circ}C$ under 30 MPa.

  • PDF

Ethanol Productivity in a Hollow Fiber Membrane Module Using High Density of Saccharomyces cerevisiae (실관반응기 내의 Saccharomyces cerevisiae의 고농도 배양을 이용한 에탄올 생산성)

  • 장호남;양지원박용석정봉현
    • KSBB Journal
    • /
    • v.7 no.1
    • /
    • pp.67-71
    • /
    • 1992
  • We studied a continuous production of ethanol by Saccharomyces cerevisiae in a hollow fiber membrane bioreactor which consisted of 50 polypropylene fibers and 3 teflon fibers. The produced $CO_2$ was removed through the teflon fibers and excess biomass was removed through the shell side. We obtained the cell and ethanol concentrations of 266g/L and 205g/L based on the shell-side volume. A nitrogen deficient medium resulted in too low an ethanol productivity to be applied to a practical process.

  • PDF

Microstructural changes of polyacrylonitrile-based carbon fibers (T300 and T700) due to isothermal oxidation (1): focusing on morphological changes using scanning electron microscopy

  • Oh, Seong-Moon;Lee, Sang-Min;Kang, Dong-Su;Roh, Jae-Seung
    • Carbon letters
    • /
    • v.18
    • /
    • pp.18-23
    • /
    • 2016
  • Polyacrylonitrile (PAN)-based carbon fibers have high specific strength, elastic modulus, thermal resistance, and thermal conductivity. Due to these properties, they have been increasingly widely used in various spheres including leisure, aviation, aerospace, military, and energy applications. However, if exposed to air at high temperatures, they are oxidized, thus weakening the properties of carbon fibers and carbon composite materials. As such, it is important to understand the oxidation reactions of carbon fibers, which are often used as a reinforcement for composite materials. PAN-based carbon fibers T300 and T700 were isothermally oxidized in air, and microstructural changes caused by oxidation reactions were examined. The results showed a decrease in the rate of oxidation with increasing burn-off for both T300 and T700 fibers. The rate of oxidation of T300 fibers was two times faster than that of T700 fibers. The diameter of T700 fibers decreased linearly with increasing burn-off. The diameter of T300 also decreased with increasing burn-off but at slower rates over time. Cross-sectional observations after oxidation reactions revealed hollow cores in the longitudinal direction for both T300 and T700 fibers. The formation of hollow cores after oxidation can be traced to differences in the fabrication process such as the starting material and final heat treatment temperature.

Filtration Characteristics according to Hollow Fiber Dispersion in Submerged Membrane Module (침지형 막모듈에서 중공사 분산에 따른 여과특성)

  • 이재인;신춘환
    • Journal of Environmental Science International
    • /
    • v.9 no.2
    • /
    • pp.173-176
    • /
    • 2000
  • This study was carried out to investigate the filtration characteristics of membrane modules according to hollow fiber dispersion for direct solid-liquid separation of activated sludge. 2 bundle, 4 bundle, and 10 bundle, and 10 bundle module used in this experiment according to hollow fiber dispersion was manufactured at laboratory and permeate flux and transmembrane pressure(TMP) of each module were observed under a suction pressure of 0.5kgf/c$m^2$. As the hollow fibers were dispersed, permeate flux was increased and TMP was decreased. Permeate flux and TMP of each module was 15.0 $\ell$/$m^2$.h and 31.8 cmHg for 2 bundle, 16.0 $\ell$/$m^2$ .h and 17.4 cmHg for 4 bundle, and 20.4 $\ell$/m2 .h and 31.8 cmHg for 10 bundle. In conclusion, the membrane fouling is expected to be decrease by maintaining lower TMP with hollow fiber dispersion.

  • PDF

Simulation of the Structural Parameters of Anti-resonant Hollow-core Photonic Crystal Fibers

  • Li, Qing;Feng, Yujun;Sun, Yinhong;Chang, Zhe;Wang, Yanshan;Peng, Wanjing;Ma, Yi;Tang, Chun
    • Current Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.143-150
    • /
    • 2022
  • Anti-resonant hollow-core photonic crystal fiber (AR-HCF) has unique advantages, such as low nonlinearity and high damage threshold, which make it a promising candidate for high-power laser delivery at distances of tens of meters. However, due to the special structure, optical properties such as mode-field profile and bending loss of hollow-core fibers are different from those of solid-core fibers. These differences have limited the widespread use of AR-HCF in practice. In this paper we conduct numerical analysis of AR-HCFs with different structural parameters, to analyze their influences on an AR-HCF's optical properties. The simulation results show that with a 23-㎛ air-core diameter, the fundamental mode profile of an AR-HCF can well match that of the widely used Nufern's 20/400 fiber, for nearly-single-mode power delivery applications. Moreover, with the ratio of cladding capillary diameter to air-core diameter ranging from 0.6 to 0.7, the AR-HCF shows excellent optical characteristics, including low bending sensitivity while maintaining single-mode transmission at the same time. We believe these results lay the foundation for the application of AR-HCFs in the power delivery of high power fiber laser systems.

Nano-Structure Control of SiC Hollow Fiber Prepared from Polycarbosilane (폴리카보실란으로부터 제조된 탄화규소 중공사의 미세구조제어)

  • Shin, Dong-Geun;Kong, Eun-Bae;Cho, Kwang-Youn;Kwon, Woo-Tek;Kim, Younghee;Kim, Soo-Ryong;Hong, Jun-Sung;Riu, Doh-Hyung
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.4
    • /
    • pp.301-307
    • /
    • 2013
  • SiC hollow fiber was fabricated by curing, dissolution and sintering of Al-PCS fiber, which was melt spun the polyaluminocarbosilane. Al-PCS fiber was thermally oxidized and dissolved in toluene to remove the unoxidized area, the core of the cured fiber. The wall thickness ($t_{wall}$) of Al-PCS fiber was monotonically increased with an increasing oxidation curing time. The Al-PCS hollow fiber was heat-treated at the temperature between 1200 and $2000^{\circ}C$ to make a SiC hollow fibers having porous structure on the fiber wall. The pore size of the fiber wall was increased with the sintering temperature due to the decomposition of the amorphous $SiC_xO_y$ matrix and the growth of ${\beta}$-SiC in the matrix. At $1400^{\circ}C$, a nano porous wall with a high specific surface area was obtained. However, nano pores grew with the grain growth after the thermal decomposition of the amorphous matrix. This type of SiC hollow fibers are expected to be used as a substrate for a gas separation membrane.