• Title/Summary/Keyword: hollow cylinder

Search Result 133, Processing Time 0.017 seconds

Investigation of Sound Pressure Detection of Fiber Optic Sensor in Transformer Oil According to TLS and CW Laser Source (TLS와 CW 광원에 따른 트랜스포머 오일 내에서 광섬유 센서의 음압 감지 특성 연구)

  • Lee, Jong-Kil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.33-41
    • /
    • 2011
  • To substitute TLS in the hybrid system which is combined with Sagnac interferometer and fiber bragg grating (FBG) it is necessary to investigate how the laser source (TLS and CW) and sensor material variate the response of fiber optic sensor. Two different hollow cylinder type mandrel materials are proposed which are PTFE and PTFE+carbon and 18 m optical fiber is wounded at the mandrel surface. CW laser source experiments had been done in the oil tank which is filled with transformer oil in the 1 kHz~20 kHz frequency range. Also Sagnac interferometer fiber optic sensor is combined with FBG called hybrid system and TLS used as a light source. Based on the experimental results PTFE sensor showed more higher magnitude of detection signal rather than carbon sensor and this result is agreement with the McMahon's theoretical results. Phase variation is inversely proportional to the elastic modulus of the mandrel material. In PTFE fiber sensor, tunable laser source showed more higher performance rather than CW case. Therefore, TLS fiber optic sensor can be applied to the hybrid system which is combined with Sagnac and FBG.

Optimum Design of Underwater Connector Hole Arrangement for Deep-sea Pressure Vessel Cover Plate (심해 압력용기 덮개판의 수중 커넥터홀 배치 최적설계)

  • Lee, Minuk;Park, Soung-Jea;Yeu, Tae-Kyeong;Ki, Hyong-Woo;Hong, Sup;Cho, Su-Gil;Jang, Jun-Yong;Lee, Tae Hee;Choi, Jong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1627-1633
    • /
    • 2012
  • A deep-sea pressure vessel needs to protect the internal electrical equipment from the high external pressure. Thus, the pressure vessel should be designed to be watertight and structurally safe. In this study, a cylindrical-type pressure vessel comprising a hollow cylinder and cover plates at both ends is investigated. For communication between the internal electronic equipment and the external device, holes are bored on the cover plate to install underwater connectors. Considering the type of internal equipment and underwater connector specifications, multiple holes may be required. These holes can affect the structural safety of the pressure vessel cover plate. In this study, the optimum design of the hole arrangement in consideration of the structural safety of the cover plate was performed.

Comparison of target classification accuracy according to the aspect angle and the bistatic angle in bistatic sonar (양상태 소나에서의 자세각과 양상태각에 따른 표적 식별 정확도 비교)

  • Choo, Yeon-Seong;Byun, Sung-Hoon;Choo, Youngmin;Choi, Giyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.330-336
    • /
    • 2021
  • In bistatic sonar operation, the scattering strength of a sonar target is characterized by the probe signal frequency, the aspect angle and the bistatic angle. Therefore, the target detection and identification performance of the bistatic sonar may vary depending on how the positions of the target, sound source, and receiver are changed during sonar operation. In this study, it was evaluated which variable is advantageous to change by comparing the target identification performance between the case of changing the aspect angle and the case of changing the bistatic angle during the operation. A scenario of identifying a hollow sphere and a cylinder was assumed, and performance was compared by classifying two targets with a support vector machine and comparing their accuracy using a finite element method-based acoustic scattering simulation. As a result of comparison, using the scattering strength defined by the frequency and the bistatic angle with the aspect angle fixed showed superior average classification accuracy. It means that moving the receiver to change the bistatic angle is more effective than moving the sound source to change the aspect angle for target identification.