• Title/Summary/Keyword: hole transfer layer

Search Result 65, Processing Time 0.03 seconds

The Luminance characteristics of Red OELD based on Znq$_2$ and dye (Znq2와 dye에 의한 적색 OELD의 발광특성)

  • 조민정;최완지;박철현;임기조;박수길;김현후
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.358-360
    • /
    • 2001
  • In this study, the bis(8-oxyquinolino)zinc II (Znq$_2$) were synthesized successfully from zinc chloride (ZnC1$_2$) as a initial material. Then, we fabricated red organic electroluminescent device with a dye (DCJTB)-doped and inserted Znq$_2$ between emission layer and cathode layer for increasing EL efficiency. The hole transfer layer is a N,N'-diphenyl-N,N'-bis-(3-methyl phenyl) -1,1'-diphenyl-4,4'- diamine(TPD), and the host material of emission layer is Znq$_2$. And we study the electrical and optical properties of devices. We found that the device using Znq$_2$ inserting layer result in the increased efficiency.

  • PDF

Improvement of Gasoline Engine Performance by Modifying the Engine Cooling System (엔진 냉각계 개선을 통한 가솔린엔진의 성능 향상)

  • 류택용;신승용;이은현;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.1-10
    • /
    • 1998
  • In this paper, we investigated the improvement of characteristics of knock, emission and fuel consumption rate by optimizing the location and size of water transfer holes in cylinder head gasket without change of engine water jacket design itself. The cooling system was modified in the direction of reducing the metal temperature in the head and increasing the metal temperature in the block. The optimization of water transfer holes in cylinder head gasket was obtained by "flow visualization test". The water transfer holes were concentrated in front side of the engine in order to reduce thermal boundary layer in the water jacket of No. 2 and No. 3 combustion changer in the cylinder head, which would have a large knock intensity, and increase thermal boundary layer in the water jacket of the cylinder block. When the modified coolant flow pattern was applied as proposed in this paper, the knock characteristic was improved. The spark timing was advanced up to 2$^{\circ}$ in low and middle speed range at a full load. In addition, HC emission at MBT was reduced by 5.2%, and the fuel consumption rate was decreased up to 1% in the driving condition of 2400 rpm and 250 KPa. However, since this coolant flow pattern mentioned in this paper might deteriorate the performance of vehicle cooling system due to the coolant flow rate reduction, a properly optimized point should be obtained. obtained.

  • PDF

Charge Doping in Graphene on Highly Polar Mica

  • Sim, Ji-Hye;Go, Taek-Yeong;Ryu, Sun-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.430-430
    • /
    • 2011
  • Graphene, one single atomic layer of graphite, has attracted extensive attention in various research fields since its first isolation from graphite. Application in the future electronics requires better understanding and manipulation of electronic properties of graphene supported on various solid substrates. Here, we present a study on charge doping and morphology of graphene prepared on atomically flat and highly polar mica substrates. Ultra-flat single-layer graphene was prepared by micro-exfoliation of graphite followed by deposition on cleaved mica substrates. Atomic force microscopy (AFM) revealed presence of ultra-thin water films formed in a layer-by-layer manner between graphene and mica substrates. Raman spectroscopy showed that a few angstrom-thick water films efficiently block electron transfer from graphene to mica. Hole doping in graphene caused by underlying mica substrates was also visualized by scanning Kelvin probe microscopy (SKPM).

  • PDF

Heat Transfer and Flow Characteristics on Co-rotating Disks with a Ventilation Hub in Hard Disk Drive (유츨 허브를 갖는 HDD내 동시회전디스크 표면에서의 열전달 및 유동특성 해석)

  • Cho, Hyung-Hee;Won, Chung-Ho;Goo-Young, Ryu
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.382-389
    • /
    • 2001
  • In the present study, local heat transfer rates for co-rotating disks with two modified hubs having ventilation holes are investigated for Rossby number of 0.04, 0.1 and 0.35 to evaluate the influence of incoming flows through hub holes. A naphthalene sublimation technique is employed to determine the detailed local heat/mass transfer coefficients on the rotating disks using the heat and mass transfer analogy. Flow field measurements are conducted using Laser Doppler Anemometry (LDA) and numerical calculations are performed simultaneously to analyze the flow patterns induced by the disk rotation. The basic flow structure in a cavity between co-rotating disks consists of three regions; the solid-body rotating inner region, the outer region with turbulence vortices and the shroud boundary layer region. The heat/mass transfer. rates on the co-rotating disks are very low near the hub due to the solid-body rotation and those increase rapidly in the outer region due to turbulence mixing. The modified hubs with ventilation holes enhances significantly the heat/mass transfer rates on the region near the hub. The results also show that the heat transfer of Hub-2 is superior to that of Hub-1, but Hub-1 is more profitable for destructing the solid-body rotating inner region.

  • PDF

Energy Transfer and Emission Properties of Organic Electroluminescent Device According to Polymer/Dye Mixing Ratio (고분자/저분자 발광재료의 혼합비에 따른 유기 전계발광 소자의 에너지 전달 및 발광특성)

  • Kim, Ju-Seung;Seo, Bu-Wan;Gu, Hal-Bon;Lee, Kyung-Sup;Park, Bok-Kee
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.997-999
    • /
    • 1999
  • We fabricated white light-emitting organic electroluminescent device which have a mixed single emitting layer containing poly(N-vinylcarbazole)[PVK], tris(8-hydroxyquinoline)aluminum[Alq3] and poly(3-hexylthiophene)[P3HT] and investigated the emission properties of it. We expect to obtain a blue light from PVK, green light from Alq3 and red light from P3HT The fabricated device emits white light over 18V with slight orange light. We think that the energy transfer in a mixed layer occurred from PVK to $Alq_3$ and P3HT resulted in decreasing the blue light intensity from PVK. With mixing of N, N'-diphenyl-N, N'-(3-methylphenyl)-[1,1'-biphenyl]-4, 4'-diamine[TPD], hole transport material, to the emitting layer, the luminance intensity of device was increased 50 times than that of the device which not contain TPD. We find that the efficiency of the white light electroluminescent device can be improved by injecting electron more effectively and blue light need to improve the color purity of white light.

  • PDF

A Study on the Emission Properties of Organic Electroluminescence Device by Various Stacked Organics Structures (유기물 적층 구조에 따른 유기 발광 소자의 발광 특성에 관한 연구)

  • 노병규;김중연;오환술
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.11
    • /
    • pp.943-949
    • /
    • 2000
  • In this paper, the single and double heterostructure organic light-emitting devices(OLEDs) were fabricated. The single heterostructure OLED(TYPE 1) is consisted of TPD as a HTL(hole transfer layer) and Alq$_3$as an EML(emitting layer). The double heterostructure OLED(TYPE 2) is consisted of TPD as a HTL, Alq$_3$as an EML and PBD as an ETL(electron transfer layer). The another double heterostructure OLED(TYPE 3) is consisted of TPD as a HTL, PBD as an EML and Alq$_3$as an ETL. We obtained a strong green emission device with maximum EL emission wavelength 500nm in TYPE 3. When the applied voltage was 12V, the emission luminescence was 120.9cd/㎡. The chromaticity index of TYPE 3 was x=0.29, y=0.50. In the characteristic plot of current-voltage, TYPE 3 device was turned on at 6.9V. This voltage was a fairly low turn-on voltage. TYPE 1 and 2 device were turned on at 10V and 8.9V respectively. These types showed no good properties over that of TYPE 3.

  • PDF

Experimental and Numerical Analysis for Effects of Two Inclined Baffles on Heat Transfer Augmentation in a Rectangular Duct (사각 덕트 내에 설치된 2개의 경사진 배플에 의한 열전달 증진 효과에 관한 실험 수치해석)

  • Kang, Ho-Keun;Ahn, Soo-Whan;Putra, Ary Bachtiar Krishna
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.11
    • /
    • pp.751-760
    • /
    • 2007
  • Baffles enhance heat transfer by disturbing boundary layer and bulk flow, creating impingement, and increasing heat transfer surface area. This study was performed to determine how the two inclined baffles (${\alpha}=5^{\circ}$ perforated models) placed at a rectangular channel affect heat transfer and associated friction characteristics. The parametric effects of perforated baffles (3, 6 and 12 holes) and flow Reynolds number ranging from 28,900 to 61,800 on the heated target surface are explored. Comparisons of the experimental data with the numerical results by commercial code CFX 10.0 are presented. As for the investigation of heat transfer behaviors on local Nusselt number with two baffles placed at $x/D_h=0.8$ and $x/D_h=8.0$ of the edge of baffles, it is evident that the inclined perforated baffles augment overall heat transfer significantly by both jet impingement and boundary layer separation. There exists an optimum perforation density to maximize heat transfer coefficients; i.e., the average Nusselt number increases with increasing number of holes, but the friction factor decreases with an increase in the hole number placed at baffles.

Luminescent Properties of Organic Light Emitting Diode Using $Alq_3$ Complex ($Alq_3$ 유도체를 사용한 유기전기발광소자의 발광 특성)

  • Yang, Ki-Sung;Kim, Doo-Seok;Kim, Byoung-Snag;Shin, Hoon-Kyu;Kim, Chung-Kyun;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1703-1705
    • /
    • 2004
  • New luminescent material, 6.11-dihydoxy-5.12-naphtacene-dione $Alq_3$ complex($Alq_2$-Ncd), 1.4-dihydoxy-5.8-naphtaquinone $Alq_3$ complex ($Al_2Nq_4$) was synthesized. The $Alq_2-$ Ncd and $Al_2Nq_4$ has big molecular weight and many ${\pi}$-electrons more than widely known $Alq_3$. And extended efforts have been made to obtain high-performance electro luminescent(EL) devices. We used hole transfer layer of powdered TPD to improve hole transfer and characteristics of interface in OLED. This study indicates not only the sterical effect but also some other effects that would be responsible for the change of the emission wavelength. improvement of luminance and etc.

  • PDF

Study on the characteristics of white organic light-emitting diodes using a new material

  • Shim, Hye-Yeon;Jeong, Ji-Hoon;Kwon, Hyuk-Joo;Cho, Young-Jun;Kim, Bong-Ok;Kim, Sung-Min;Kim, Chi-Sik;Yoon, Seung-Soo;Kim, Young-Kwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.688-691
    • /
    • 2004
  • In this study, we synthesized a new red emitting material of a Red225 doped into $Alq_3$ (tris(8-quinolinolato)aluminum (III)) and fabricated white organic light-emitting diodes (OLEDs) with a simple device structure. With a blue emitting material of DPVBi (4,4'-bis(2,2'-diphenylvinyl)1,1'-biphenyl) that can transfer effectively both a hole and an electron, OLEDs with a narrow emission layer could be possible without a hole-blocking layer. Consequently, the driving voltage and stability of devices have been improved. The devices show the Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (0.36, 0.35) at luminance of 2000 cd/$m^2$. The luminous efficiency is about 3.5 cd/A, luminance is about 12000 cd/$m^2$ and current density is about 350 mA/$cm^2$ at 12 V, respectively.

  • PDF

A performance study of organic solar cells by electrode and interfacial modification (전극과 계면간의 개질에 의한 유기태양전지의 성능 연구)

  • Kang, Nam-Su;Eo, Yong-Seok;Ju, Byeong-Kwon;Yu, Jae-Woong;Chin, Byung-Doo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.67-67
    • /
    • 2008
  • Application of organic materials with low cost, easy fabrication and advantages of flexible device are increasing attention by research work. Recently, one of them, organic solar cells were rapidly increased efficiency with regioregular poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyricacidmethylester (PCBM) used typical material. To increased efficiency of organic solar cell has tried control of domain of PCBM and crystallite of P3HT by thermal annealing and solvent vapor annealing. [4-6] In those annealing effects, be made inefficiently efficiency, which is increased fill factor (FF), and current density by phase-separated morphology with blended P3HT and PCBM. In addition, increased conductivity by modified hole transfer layer (HTL) such as Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), increased both optical and conducting effect by titanium oxide (TiOx), and changed cathode material for control work function were increased efficiency of Organic solar cell. In this study, we had described effect of organic photovoltaics by conductivity of interlayer such as PEDOT:PSS and TCO (Transparent conducting oxide) such as ITO, which is used P3HT and PCBM. And, we have measured with exactly defined shadow mask to study effect of solar cell efficiency according to conductivity of hole transfer layer.

  • PDF