MoO3 metal oxide nanostructure was formed by hydrothermal synthesis, and a perovskite solar cell with an MoO3 hole transfer layer was fabricated and evaluated. The characteristics of the MoO3 thin film were analyzed according to the change of hydrothermal synthesis temperature in the range of 100 ℃ to 200 ℃ and mass ratio of AMT : nitric acid of 1 : 3 ~ 15 wt%. The influence on the photoelectric conversion efficiency of the solar cell was evaluated. Nanorod-shaped MoO3 thin films were formed in the temperature range of 150 ℃ to 200 ℃, and the chemical bonding and crystal structure of the thin films were analyzed. As the amount of nitric acid added increased, the thickness of the thin film decreased. As the thickness of the hole transfer layer decreased, the photoelectric conversion efficiency of the perovskite solar cell improved. The maximum photoelectric conversion efficiency of the perovskite solar cell having an MoO3 thin film was 4.69 % when the conditions of hydrothermal synthesis were 150 ℃ and mass ratio of AMT : nitric acid of 1 : 12 wt%.
We prepared Organic LED with a two layer structure by vacuum evaporation. The diode consisted of hole transfer layer (thickness of 30, 50, 70 nm) and electron transfer layer (thickness of 70, 50, 30 nm) material, which was N, N'-diphenyl- N, N'-bis-(3-methyl phenyl)-1,1'-diphenyl-4,4'-diamine)(TPD) and tris(8-hydroxy quinoline) aluminum(Alq3), respectively. We investigated EL properties of the LED with various thickness and cathode electrode. The best results were obtained when thickness of the electron layer is equal to that of emission layer and when AlLi alloy was used as a cathode. The EL intensity, luminance and efficiency of organic LED with equal of layer thick were improved seven, three and two times, respectively. Alq3 was ionized by carrier injection from cathode and could produce exitons. After electron-hole pairs were formed by combination of the electrons and holes at the emission layer, Alq3 layer emitted light.
Hole transporting polymer(poly[N-(p-diphenylamine)phenylmethacrylamide], PDPMA) was doped with nile red dye at various concentrations to study the influence of doping on the energy transfer during light emitting processes. Organic LEDs composed of ITO/blend(PDPMA -nile red)/ Alq$_3$/Al as well as thin films of blend(PDPMA -nile red)/ Alq$_3$ were manufactured for investigating photoluminescence, electroluminescence, and current-voltage characteristics. Atomic Force Microscopy was also used to observe surface morphology of the blend films. It was found that such doping. significantly influences the efficiency of the energy transfer from the Alq$_3$ layer to blended layer and the optical/electrical properties could be optimized by choosing the right concentration of the dye molecule. The results also showed a interesting correlation with the morphological aspect, i.e. the optimum luminescence at the concentration with the least surface roughness. When the concentration of nile red was 0.8 wt%, the maximum energy transfer could be achieved.
The structure of organic light-emitting diodes(OLEDs) with typical heterostructure consists of anode, hole injection layer, hole transport layer, light-emitting layer, electron transport layer, electron injection layer, and cathode. 4,4bis[N-(1-napthyl)-N-phenyl-amino]-biphenyl(NPB) used as a hole transport layer and 4'4-bis(2,2'-diphenyl vinyl)-1,1'-biphenyl(DPVBi) used as a blue light emitting layer were graded-mixed at selected ratio. Interface at heterojunction between the hole transport layer and the elecrtron transport layer restricts carrier's transfer. Mixing of the hole transport layer and the emitting layer reduces abrupt interface between the hole transport layer and the electron transport layer. The operating voltage of OLED devices with graded mixed-layer structure is 2.8 V at 1 $cd/m^2$ which is significantly lower than that of OLED device with typical heterostructure. The luminance of OLED devices with graded mixed-layer structure is 21,000 $cd/m^2$ , which is much higher than that of OLED device with typical heterostructure. This indicates that the graded mixed-layer enhances the movement of carriers by reducing the discontinuity of highest occupied molecular orbital(HOMO) of the interface between hole transport layer and emitting layer.
In this study, we fabricated red organic electrolu-minescent device with a doping material (DCJTB), and The cell structure used ITO:indium tin oxide $[20{\Omega}]$/CuPc:Hole injection layer 20nm/NPB: Hole transfer layer 40nm/$Alq_3$ (host) + DCJTB(1% or 3%) (guest) Emitting layer 40nm/$Alq_3$ : Electron transfer layer 30nm/Al :Cathode layer 150nm. the luminescent layer consisted of a host material. 8-hydrozyquinoline aluminum $(Alq_3)$, and DCJTB dye as the dopant. a stable red emission (chromaticity coordinates : x=0.64, y=0.36) was obtained in this cell with the luminance range of $100-600cd/m^2$. we study the electrical and optical properties of devices.
The flow characteristics and the heat transfer rate on a surface by interaction of a pair of vortices were studied experimentally. The test facility consisted of a boundary-layer wind tunnel with a vortex introduced into the flow by half-delta winglet protruding from the surface. In order to control the strength of the longitudinal vortices, the angles of attack of the vortex generators were varied from $\pm20\;degree\;to\;\pm45$ degree, but spacings between the vortex generators were fixed to 4 cm. The 3-dimensional mean velocity measurements were made using a five-hole pressure probe. Heat transfer measurements were made using the thermochromatic liquid to provide the local distribution of the heat transfer coefficient. By using the method mentioned above, the following conclusions were obtained from the present experiment. The boundary layer was thinned in the regions where the secondary flow was directed toward the wall and thickened where it was directed away from the wall. The peak augmentation of the local heat transfer coefficient occurred in the downwash region near the point of minimum boundary-layer thickness.
Film cooling performance from two rows of holes with opposite orientation angles is evaluated in terms of heat flux ratio. The film cooling hole has a fixed inclination angle of 35°and orientation angle of 45°for the downstream row and -45°for the upstream row. Four film cooling hole arrangements including inline and staggered configurations are investigated. The blowing ratio studied was 1.0. Boundary layer temperature distributions are measured to investigate injectant behaviors and mixing characteristics. Detailed distributions of the adiabatic film cooling effectiveness and the heat transfer coefficient are measured using TLC(Thermochromic Liquid Crystal). For the inline configuration, there forms a downwash flow at the downstream hole exit to make the injectant well attach to the wall, which gives high adiabatic film cooling effectiveness and heat transfer coefficient. The evaluation of heat flux ratio shows that the inline configuration gives better film cooling performance with the help of the downwash flow at the downstream hole exits.
처음 유기물의 인광 발견 이후 Host-dopant 시스템을 이용하여 Emission layer(EML)을 Co-deopsition 하는 방법으로 주로 인광 유기 발광 다이오드를 제작 하였다. [1] co-deposition을 이용해 만든 유기 발광 다이오드에 많은 장점이 있지만, 반대로 소자를 제작하는데 있어서는 많은 문제점을 가지고 있다. [2-4] 이러한 문제점을 개선하기 위하여 co-deposition 대신 non-doped Multi Quantum Well(MQW) 구조를 사용하여 doping 하지 않는 방법을 이용하는 논문들이 보고 되고 있다. Hole, electron, exciton이 MQW 구조를 지나면서, dopant well 안에 갇히게 되고, 그 안에서 다른 layer 간에 energy transfer와, hole-electron leakage가 줄어 들어, 더 효율적인 유기 발광 다이오드를 만들 수 있게 된다. [5-7] 이 연구에서는 CBP를 Potential Barrier로 사용하고, Ir(ppy)3 (Green dopant), Ir(btp)2 (Red dopant) 를 각각 Potential Well로 사용하였고, 두께는 CBP 9nm, dopant 1nm로 하였다. 이러한 소자를 만들고 dopant를 3개의 well에 적당히 배치하여, 각 well에서의 실험적인 발광 량 과, EML 안에서의 발광 mechanism 그리고 각 potential barrier를 줄여가며 dexter, forster에 의한 energy transfer에 대하여 알 수 있었다.
Coulomb drag is an effective probe into interlayer interaction between two electron systems in close proximity. For example, it can be a measure of momentum, phonon, or energy transfer between the two systems. The most exotic phenomenon would be when bosonic indirect excitons (electron-hole pairs) are formed in double layer systems where electrons and holes are populated in the opposite layers. In this review, we present various drag phenomena observed in different double layer electron systems, e.g. GaAs/AlGaAs heterostructures and two-dimensional material based heterostructures. In particular, we address the different behavior of Coulomb drag depending on its origin such as momentum or energy transfer between the two layers and exciton condensation. We also discuss why it is difficult to achieve electron-hole pairs in double layer electron systems in equilibrium.
The organic electroluminescene (EL) device has gathered much interested because of its potential in materials and simple device fabrication. We fabricated EL device which have a mixed single emitting layer containing N,N'-diphenyl-N,N'-(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine [TPD] and poly(3-hexylthiophene) [P3HT]. The molar ratio between P3HT and TPD chaged with 1:1, 3:1, 5:1, 3:2 and 5:2. EL intensity of ITO/P3HT+TPD/Mg:In devices is enhanced by addition of TPD into P3HT. This can be explained that the energy transfer occurs from TPD to P3HT. Recombination probability increases in emitting layer because that TPD as hole transport material plays a role more injection hole and Mg:In (3.7eV) electrode has low work function make easily electron injection. ITO/P3HT+TPD(5:2)/Mg:In devices emit orange-red light at 28V.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.