• Title/Summary/Keyword: hole pattern

Search Result 311, Processing Time 0.026 seconds

Residual Stress Measurement of Sand Casting by ESPI Device and Thermal Stress Analysis (ESPI 장비를 활용한 사형 주조품의 잔류응력 측정 및 주조 열응력 해석)

  • Kwak, Si-Young;Nam, Jeong-Ho
    • Journal of Korea Foundry Society
    • /
    • v.40 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • Many studies involving a thermal stress analysis using computational methods have been conducted, though there have been relatively few experimental attempts to investigate thermal stress phenomena. Casting products undergo thermal stress variations during the casting process as the temperature drops from the melting temperature to room temperature, with gradient cooling also occurring from the surface to the core. It is difficult to examine thermal stress states continuously during the casting process. Therefore, only the final states of thermal stress and deformations can be detemined. In this study, specimens sensitive to thermal stress, were made by a casting process. After which the residual stress levels in the specimens were measured by a hole drilling method with Electron Speckle-Interferometry technique. Subsequently, we examined the thermal stresses in terms of deformation during the casting process by means of a numerical analysis. Finally, we compared the experimental and numerical analysis results. It was found that the numerical thermal stress analysis is an effective means of understanding the stress generation mechanism in casting products during the casting process.

A Study on the Detection of the Abnormal Tool State for Neural Network in Drilling (드릴가공시 신경망에 의한 공구 이상상태 검출에 관한 연구)

  • 신형곤;김민호;김태영;김대성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1021-1024
    • /
    • 2001
  • Out of all metal-cutting processes, the hole-making process is the most widely used. It is estimated to be more than 30% of the total metal-cutting process. It is therefore desirable to monitor and detect drill wear during the hole-drilling process. In this paper, the vision system of the sensing methods of drill flank wear on the basis of image processing is used to detect the wear pattern by non-contact and direct method and get the reliable wear information about drill. In image processing of acquired image, median filter is applied for noise removal. The vision flank wear area of the drill was measured. Backpropagation neural networks (BPns) were used for no-line detection of drill wear. The neural network consisted of three layers: input, hidden and output. The input vectors comprised of spindle rotational speed, feed rates, vision flank wear, thrust and torque signals. The output was the drill wear state which was either usable or failure. Drilling experiments with various spindle rotational speed and feed rates were carried out. The learning process was peformed effectively by utilizing backpropagation. The detection of the abnormal states using BPNs achieved 96.4% reliability even when the spindle rotational speed and feedrate were changed.

  • PDF

Effect of Mainstream Turbulence Intensitv on Dimensionless Temperature Downstream of Staggered Rows of Recangular Hole (주유동의 난류강도가 엇갈린 배열의 사각홀 하류에서의 온도장 분포에 미치는 영향)

  • Kim, Young-Bong;Lee, Dong-Ho;Oh, Min-Guen;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.181-186
    • /
    • 2003
  • An experimental study has been conducted to measure the temperature fields for two and three staggered rows of the rectangular shaped-holes with high turbulence intensity. 10 % turbulence intensity is obtained by installation of two kinds of grids which have different shapes. One grid which is installed at 30d upstream from center of 1st row of holes is composed of vertical cylinders of which diameter is 10 mm and center to center distance is 18 mm. The other installed 15d apart to upstream from center of 1st row of holes which has square pattern is constructed of 3 rum square bars and bar spacing is 25 mm. Temperature fields are measured by using a thermocouple rake which is attached on three-axis traversing system. The results show that the overall values are decreased and the thicker film of coolant is fanned downstream of rows of holes for high mainstream turbulence intensity.

  • PDF

Electrochemical Machining Using Tungsten Microelectrode (텅스텐 미세 전극을 이용한 전해 가공)

  • Ryu, Shi-Hyoung;Yu, Jong-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.134-140
    • /
    • 2009
  • The feasibility of electrochemical drilling and milling on stainless steel are investigated using tungsten microelectrode with $10{\mu}m$ in diameter. For the development of environmentally friendly and safe electrochemical process, citric acid solution is used as electrolyte. A few hundred nanoseconds duration pulses are applied between the microelectrode and work material for dissolution localization. Tool fracture by Joule heating, micro welding, capillary phenomenon, tool wandering by the generated bubbles are observed and their effects on micro ECM are discussed. Occasionally, complex textures including micro pitting corrosion marks appeared on the hole inner surface. Metal growth is also observed under the weak electric conditions and it hinders further dissolutions for workpiece penetration. By adjusting appropriate pulse and chemical conditions, micro holes of $37{\mu}m$ in diameter with $100{\mu}m$ in depth and 26Jim in diameter with $50{\mu}m$ in depth are drilled on stainless steel 304. Also, micro grooves with $18{\mu}m$ width and complex micro hand pattern are machined by electrochemical milling.

Laser Drilling System for Fabrication of Micro via Hole of PCB (인쇄회로기판의 미세 신호 연결 홀 형성을 위한 레이저 드릴링 시스템)

  • Cho, Kwang-Woo;Park, Hong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.14-22
    • /
    • 2010
  • The most costly and time-consuming process in the fabrication of today's multi-layer circuit board is drilling interconnection holes between adjacent layers and via holes within a layer. Decreasing size of via holes being demanded and growing number of via holes per panel increase drilling costs. Component density and electronic functionality of today's multi-layer circuit boards can be improved with the introduction of cost-effective, variable depth laser drilled blind micro via holes, and interconnection holes. Laser technology is being quickly adopted into the circuit board industry but can be accelerated with the introduction of a true production laser drilling system. In order to get optimized condition for drilling to FPCB (Flexible Printed Circuit Board), we use various drill pattern as drill step. For productivity, we investigate drill path optimization method. And for the precise drilling the thermal drift of scanner and temperature change of scan system are tested.

A study on the development of gas measurement system in shoes mold and automatic gas-vent exchange machine with computer vision (신발금형의 가스 배출량 측정 장치와 영상정보를 이용한 가스벤트 자동 교환 시스템의 개발)

  • Kwon, Jang-Woo;Hong, Jun-Eui;Yoon, Dong-Eop;Choi, Heung-Ho;Kil, Gyung-Suk
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.20-27
    • /
    • 2006
  • This paper presents a gas measurement system for deciding hole positions on a PU middle-sole mold from computed gas amount. The optimal number of holes and their positions on the shoe mold are decided from statistical experiment results to overcome the problem of excessive expenses in gas vent exchange. This paper also describes a gas vent exchange mechanism using computer vision system. The gas hole detecting process is based on computer vision algorithms represented as a simple Pattern Matching. The experimental result showed us that the system was useful to calculate the number of holes and their positions on the shoes mold.

Substitutional Effects of Na in the YB$a_2Cu_3O_{7-y}$ Oxide Superconductors

  • Hur Nam Hwi;Ha, Dong Han;Park Yong Ki;Park, Jong Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.425-428
    • /
    • 1992
  • Sodium substituted samples of $Y_{1-x}Na_xBa_2Cu_3O_{7-y}$ for $0.00{\leq}x{\leq}0.16$ were prepared and characterized by X-ray powder pattern, electrical resistivity and magnetic susceptibility measurements, Raman spectroscopy, and idometric titration. The Na substituted compounds have narrow solid solution limits where $0.00{\leq}x{\leq}0.16.$ As the Na concentration increases, the parent orthorhombic structure tends to gradually change to tetragonal. Small changes in the superconducting transition temperature, Tc, are observed in this solid solution region. Raman spectra for the Na phases are virtually identical with that of $YBa_2Cu_3O_7$ except that the Cu(1)-O(4) stretching mode at 504 $cm^{-1}$ and the Cu(2)-O(2,3) bending mode at 340 $cm^{-1}$ for x = 0.16 are slightly shifted. The hole concentrations of the sodium substituted compounds ranged from 0.31 to 0.33 per Cu site are increased with Na content. The substitution of $Na^+$ for $Y^{3+}$ site appears to create oxygen vacancies in the Cu-O chains, causes structural change from orthorhombic to tetragonal, and increases hole concentration in the substituted system.

Analyzing the bearing capacity of shallow foundations on two-layered soil using two novel cosmology-based optimization techniques

  • Gor, Mesut
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.513-522
    • /
    • 2022
  • Due to the importance of accurate analysis of bearing capacity in civil engineering projects, this paper studies the efficiency of two novel metaheuristic-based models for this objective. To this end, black hole algorithm (BHA) and multi-verse optimizer (MVO) are synthesized with an artificial neural network (ANN) to build the proposed hybrid models. Based on the settlement of a two-layered soil (and a shallow footing) system, the stability values (SV) of 0 and 1 (indicating the stability and failure, respectively) are set as the targets. Each model predicted the SV for 901 stages. The results indicated that the BHA and MVO can increase the accuracy (i.e., the area under the receiving operating characteristic curve) of the ANN from 94.0% to 96.3 and 97.2% in analyzing the SV pattern. Moreover, the prediction accuracy rose from 93.1% to 94.4 and 95.0%. Also, a comparison between the ANN's error decreased by the BHA and MVO (7.92% vs. 18.08% in the training phase and 6.28% vs. 13.62% in the testing phase) showed that the MVO is a more efficient optimizer. Hence, the suggested MVO-ANN can be used as a reliable approach for the practical estimation of bearing capacity.

Reconstruction of Triceps Tendon Avulsion Using Mesh Graft and Krackow Suture in a Border Collie

  • Hyeon-Jong Choi;Jong-Hoon Kim;Eunchae Yoon;Tae-Sung Hwang;Hee-Chun Lee;Dongbin Lee;Jae-Hoon Lee
    • Journal of Veterinary Clinics
    • /
    • v.39 no.6
    • /
    • pp.378-383
    • /
    • 2022
  • A 3-year-old, 24-kg intact female Border Collie was referred for a toe-touch weight-bearing stance, intermittent weight-bearing lameness, and moderate pain reaction of the right forelimb on physical examination and right humerus olecranon avulsion fracture on diagnostic imaging examination. Surgical repair was performed using tension band wiring to re-attach the triceps tendon and distal olecranon. Migration of the distal olecranon fragment was observed due to comminuted fracture of the fragment 5-days after surgery, and revision surgery was performed. The tension-relieving sutures were passed through the pre-drilled hole in the olecranon, and the polyester mesh was augmented to the suture region, covering the triceps tendon and olecranon drilling hole using the Krackow suture pattern. The elbow joint was immobilized using a type IA transarticular external fixator, which was removed 8 weeks after surgery. Fourteen weeks after surgery, no lameness was observed on gait evaluation. At follow-up after 7 months, the distal olecranon fragment had stabilized, and no lameness was observed.

Case study on the Distributed Multi-stage Blasting using Stemming-Help Plastic Sheet and Programmable Sequential Blasting Machine (전색보호판과 다단발파기를 이용한 다단식분산발파의 현장 적용 사례)

  • Kim, Se-Won;Lim, Ick-Hwan;Kim, Jae-Sung
    • Explosives and Blasting
    • /
    • v.31 no.2
    • /
    • pp.14-24
    • /
    • 2013
  • The most effective way of the rock removing works in the downtown area is to removing rocks by splitting the rock by blasting with small amount of explosives in the hole. However environmental factors not only limit the applications but also increase the forbidden area. As this is a distributed multi-stage blasting method and to reduce vibration by applying the optimized precisioncontrol-blasting method, it is applicable in all situations. The process is to fix the stemming-help plastic sheet to the hole entrance when stemming explosives and insert detonator and explosive primer with same delay time, two or three sets. This method is more efficient in the downtown area where claims and dispute from vibration are expected. This method is easily usable by designing blast pattern even in the area where delay time blasting is difficult after multi-stage explosive stemming due to short length of blast hole (1.2~3.0m) and there is no detonator wire shortage or dead-pressure.