• 제목/요약/키워드: hole deviation

검색결과 62건 처리시간 0.025초

Magnetic Sector SIMS의 Sample Holder 위치에 따르는 RSF (Relative Sensitivity Factor) 변화 검증

  • 홍성윤;이종필;홍태은;윤명노;민경열;이순영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.192-192
    • /
    • 1999
  • SIMS(Secondary Ion Mass Spectrometry)는 다른 표면 분석장비와 비교하여^g , pp m,^g , pp b 단위의 미량분석이 가능한 장비로서, 특히 depth Profiling을 위한 dynamic SIMS는 Mass Spectrometer의 종류에 따라 Quadrupole SIMS (Q-SIMS)와, Magnetic Sector SIMS (M-SIMS)로 분류된다. 한편, Q-SIMS와 달리 M-SIMS의 경우, Transmission을 높여 주기 위해 Sample Holder에 수 keV의 bias를 걸어 주는데, 이로 인하여 분석 원소에 대한 Sensitivity가 향상되어 지는 반면, RSF의 변화와 같은 분석상의 Artifact가 발생하게 된다. 일반적으로 Q-SIMS의 경우에는 RSF의 RSD(Relative Standard Deviation)가 1%이내에서 보고되고 있지만 M-SIMS에 있어서는 이러한 Deviation이 M-SIMS보다 크게 나타난다. 이 차이는 주로 Sample Holder와 Immersion Lens 사이에 형성되는 Magnetic Field의 왜곡과 Spectrometer의 문제로부터 발생한다. 본 논문에서는 Sample Holder의 종류 및 holder so window 위치에 따라 RSF의 차이를 측정하고 그 data를 RS/1 통계 Package를 이용하여 계량적으로 검증하였으며, 그 차이의 원인과 대책을 제시하고자 한다. 실험에 사용된 Sample은 Si(100) p-type Wafer에 Boron을 이온 주입하여 제작하였다. 이온 주입 장비는 Varian E-500HP이며, 5.0E13 ions/cm2의 dose양을 80keV의 Energy로 각각 7도와 22도의 Tilt와 Twist Angle로 이온 주입을 하였다. SIMS분석에 사용된 Sample Holder는 각각 3 Hole, 9 Hole Type HOlder이며, 분석은 Cameca IMS-6f를 사용하여 B에 대한 Matrix Peak으로 28Si++를 얻었다. 실험 결과 3 Hole Type Sample Holder의 경우 RSF의 RSD는 5.84%, 9Hle Type Sample Holder의 경우는 14.3%로 나타났으나 분석 Window의 위치에 따르는 Grouping을 실시한 결과, 3 Hole Type Sample Holder의 경우 1.2%, 9Hole Type Sample Holder의 경우 9.8%로 RSF의 변화가 감소하였다. 이러한 Deviation은 Sample Holder를 Mount시킬 때 세 개의 Screw를 이용하여 Immersion Lens와의 평형을 잡아주기 때문에 발생하며, 이 Munting을 정확히 해줌으로써 RSF의 변화를 줄일 수 있으나, 실제로 완벽한 Mounting이 불가능하기 때문에 RSF를 일정하게 하기 위해서는 Sample Holder so Window의 취치를 일정하게 설정한 후 분석을 실시해야 한다고 판단된다.

  • PDF

연성파괴기준을 이용한 허브홀 확장과정에서의 파단 예측 (Prediction of fracture in Hub-hole Expansion Process Using Ductile fracture Criteria)

  • 고윤기;이종섭;허훈;김홍기;박성호
    • 소성∙가공
    • /
    • 제14권7호
    • /
    • pp.601-606
    • /
    • 2005
  • A hole expansion process is an important process in producing a hub-hole in a wheel disc of a vehicle. In this process, the main parameter is the formability of a material that is expressed as the hole expansion ratio. In the process, a crack is occurred in the upper edge of a hole as the hole is expanded. Since prediction of the forming limit by hole expansion experiment needs tremendous time and effort, an appropriate fracture criterion has to be developed for finite element analysis to define forming limit of the material. In this paper, the hole expansion process of a hub-hole is studied by finite element analysis with ABAQUS/standard considering several ductile fracture criteria. The fracture mode and hole expansion ratio are compared with respect to the various fracture criteria. These criteria do not predict its fracture mode or hole expansion ratio adequately and show deviation from experimental results of hole expansion. A modified ductile fracture criterion is newly proposed to consider the deformation characteristics of a material accurately in a hole expansion process. A fracture propagation analysis at the hub-hole edge is also performed for high accuracy of prediction using the new fracture criterion proposed.

새로운 연성파괴기준을 이용한 허브홀 확장과정에서의 파단 예측 (Prediction of fracture in hub-hole expansion process using new ductile fracture criterion)

  • 고윤기;이종섭;김홍기;박성호;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.163-166
    • /
    • 2005
  • A hole expansion process is an important process in producing a hub-hole in a wheel disc of a vehicle. In this process, the main parameter is the formability of a material that is expressed as the hole expansion ratio. The hub-hole expansion process is different from conventional forming processes or hole flanging processes from the view-point of its deformation mode and forming of a thick plate. In the process, a crack is occurred in the upper edge of a hole as the hole is expanded. Since prediction of the forming limit by hole expansion experiment needs tremendous time and effort, an appropriate fracture criterion has to be developed fur finite element analysis to define forming limit of the material. In this paper, the hole expansion process of a hub-hole is studied by finite element analysis with ABAQUS/standard considering several ductile fracture criteria. The fracture mode and hole expansion ratio is compared with respect to the various fracture criteria. These criteria do not predict its fracture mode or hole expansion ratio adequately and show deviation from experimental results of hole expansion. A modified ductile fracture criterion is newly proposed to consider the deformation characteristics of a material accurately in a hole expansion process. A fracture propagation analysis at the hub-hole edge is also performed for high accuracy of prediction using the new fracture criterion proposed.

  • PDF

엘리베이터 로프장력 자동조절기 개발에 관한 연구 (A Study on the Development of an Elevator Rope Tension Automatic Equalizer)

  • 김동복;김갑순
    • 한국기계가공학회지
    • /
    • 제19권5호
    • /
    • pp.60-66
    • /
    • 2020
  • In this paper, we describe a rope tension automatic equalizer that automatically adjusts several rope tensions connecting the elevator car and the counterweight. The automatic rope tension equalizer is composed of a body, ram, and rope shaft. The body includes a cylinder hole, in which a ram is assembled. A rope shaft is assembled in a hole in the ram. Moreover, the rope is fixed to the rope shaft, with a hole through which fluid can pass between each cylinder hole and the hole of the body. The central concept is that the force of each rope is evenly distributed by the hydraulic pressure between the ram and the body cylinder when the rope is pulled. The thickness of the jaw connecting the small and large diameters of the body of the rope tension automatic equalizer was 15 mm based on structural analysis. The results of the representative experiment to install the produced rope tension equalizer on the elevator revealed it was possible to reduce the rope tension deviation by more than 71 kg.

비영위법에 의한 5공 프로브의 교정에 관한 연구 (A Study on the Five - hole Probe Calibration with Non-nulling Method)

  • 정양범;신영호;박호동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권2호
    • /
    • pp.116-116
    • /
    • 1996
  • This paper is concerned with a method for calibrating five-hole probes of both angle-tube and prismatic geometries to measure local total and static pressures and the magnitude and direction of the mean velocity vector. Descriptions of the calibration technique, the typical calibration data, and an accompanying discussion of the interpolation procedure are included. The flow properties are determined explicitly from measured probe pressures using calibration data. Flow angles are obtained within the deviation angle of 1.0 degree and dynamic pressures within 0.03 with 95% certainty. The variations in the calibration data due to Reynolds number are also discussed. For the range of Reynolds number employed, no effect was detected on the pitch, yaw and total pressure coefficients. However, the static pressure coefficient showed change to cause minor variations in the magnitude of the calculated velocity vector. To account for these variations, average correction factors need to be incorporated into the static pressure coefficient.

비영위법에 의한 5공 프로브의 교정에 관한 연구 (A Study on the Five-hole Probe Calibration with Non-nulling Method)

  • 정양범;신영호;박호동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권2호
    • /
    • pp.48-56
    • /
    • 1996
  • This paper is concerned with a method for calibrating five-hole probes of both angle-tube and prismatic geometries to measure local total and static pressures and the magnitude and direction of the mean velocity vector. Descriptions of the calibration technique, the typical calibration data, and an accompanying discussion of the interpolation procedure are included. The flow properties are determined explicitly from measured probe pressures using calibration data. Flow angles are obtained within the deviation angle of 1.0 degree and dynamic pressures within 0.03 with 95% certainty. The variations in the calibration data due to Reynolds number are also discussed. For the range of Reynolds number employed, no effect was detected on the pitch, yaw abd total pressure coefficients. However, the static pressure coefficient showed change to cause minor variations in the magnitude of the calculated velocity vector. To account for these variations, average correction factors need to be incorporated into the static pressure coefficient.

  • PDF

딥러닝 기반의 TSV Hole TCD 계측 방법 (Deep Learning Based TSV Hole TCD Measurement)

  • 정준희;구창모;조중휘
    • 반도체디스플레이기술학회지
    • /
    • 제20권2호
    • /
    • pp.103-108
    • /
    • 2021
  • The TCD is used as one of the indicators for determining whether TSV Hole is defective. If the TCD is not normal size, it can lead to contamination of the CMP equipment or failure to connect the upper and lower chips. We propose a deep learning model for measuring the TCD. To verify the performance of the proposed model, we compared the prediction results of the proposed model for 2461 via holes with the CD-SEM measurement data and the prediction results of the existing model. Although the number of trainable parameters in the proposed model was about one two-thousandth of the existing model, the results were comparable. The experiment showed that the correlation between CD-SEM and the prediction results of the proposed model measured 98%, the mean absolute difference was 0.051um, the standard deviation of the absolute difference was 0.045um, and the maximum absolute difference was 0.299um on average.

BTA드릴가공의 절삭성능에 관한 연구 (A Study on Cutting Performance of the BTA Drilling)

  • 장성규;김순경;전언찬
    • 한국정밀공학회지
    • /
    • 제15권10호
    • /
    • pp.65-72
    • /
    • 1998
  • The BTA drilling chip is better for deep hole drilling than other self-piloting with pad drilling chips because the large length to diameter ratio allows a unique cutting force dispersion and better supplies the high pressure fluid. Therefore the BTA is useful for many tasks, such as coolant hole drilling of large scale dies, as well as tube seat drilling, which is essential for the heat exchanger, and variable component drilling for automobiles. Deep hole drilling has several significant problems, such as hole deviation, hole over-size, circularity, straightness, and surface roughness. The reasons for these problems, which often result in quality short comings, are an alignment of the BTA drilling system and the unbalance of cutting force by work piece and tool shape. This paper analyzes the properties through an experiment which com¬pared single-edge BTA drills with multiple-edge BTA drills, as well as the shapes of the tools to cause an unbalance of cutting force, and its effect on the precision of the worked hole. Conclusions are as follows. 1) In SMSSC drilling, 60m/min of BTA with single and multi-edged tools proved the best cutting condition and the lowest wear character. 2) The roundness got a little worse as cutting speed was increased, but surface roughness was hot affected. 3) It was proved that the burnishing torque of both drills approached 26%. which is almost the same as the 24% insisted on by Griffiths, and the dispersion characteristic of the multi-edged BTA drill proved better than the single-edge BTA drill.

  • PDF

Tidal Disruption Flares from Stars on Bound Orbits

  • Hayasaki, Kimitake;Stone, Nicholas;Loeb, Abraham
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.60.1-60.1
    • /
    • 2013
  • We study tidal disruption and subsequent mass fallback process for stars approaching supermassive black holes on bound orbits, by performing three dimensional Smoothed Particle Hydrodynamics simulations with a pseudo-Newtonian potential. We find that the mass fallback rate decays with the expected -5/3 power of time for parabolic orbits, albeit with a slight deviation due to the self-gravity of the stellar debris. For eccentric orbits, however, there is a critical value of the orbital eccentricity, significantly below which all of the stellar debris is bound to the supermassive black hole. All the mass therefore falls back to the supermassive black hole in a much shorter time than in the standard, parabolic case. The resultant mass fallback rate considerably exceeds the Eddington accretion rate and substantially differs from the -5/3 power of time. We also show that general relativistic precession is crucial for accretion disk formation via circularization of stellar debris from stars on moderately eccentric orbits.

  • PDF

이종재료의 레이저용접에서 잔류응력 평가 (The Study on Residual Stress of Laser Weldment for the Heterogeneous Materials)

  • 오세헌;민택기
    • 한국공작기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.119-125
    • /
    • 2004
  • Generally, it is used the compensation spring to compensate the inaccuracy of screen image induced by thermal deformation in CRT monitor. Its mechanism is bi-metallic system made of heterogeneous metals and these is bonded by laser welding. But laser welding induces the non-uniform temperature distribution and locally residual stress is yielded by these temperature deviation. This paper studies residual stress of laser weldment using FEA and hole drilling method. The results are followed. In the case of heterogeneous materials weldment, higher residual stress induced in the weldment region of SUS 304 which have larger CTE than Ni 36 and residual stress on the middle of specimen is higher by 10.9% than that of its surface Measured residual stress of SUS 304 yield 481MPa and that of Ni 36 is 140.5MPa in the vicinity of the welding region. And the residual distribution is very similar in comparison with FEA result.