• Title/Summary/Keyword: hole center

Search Result 743, Processing Time 0.023 seconds

Gate-Controlled Spin-Orbit Interaction Parameter in a GaSb Two-Dimensional Hole gas Structure

  • Park, Youn Ho;Koo, Hyun Cheol;Shin, Sang-Hoon;Song, Jin Dong;Kim, Hyung-Jun;Chang, Joonyeon;Han, Suk Hee;Choi, Heon-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.382-383
    • /
    • 2013
  • Gate-controlled spin-orbit interaction parameter is a key factor for developing spin-Field Effect Transistor (Spin-FET) in a quantum well structure because the strength of the spin-orbit interaction parameter decides the spin precession angle [1]. Many researches show the control of spin-orbit interaction parameter in n-type quantum channels, however, for the complementary logic device p-type quantum channel should be also necessary. We have calculated the spin-orbit interaction parameter and the effective mass using the Shubnikov-de Haas (SdH) oscillation measurement in a GaSb two-dimensional hole gas (2DHG) structure as shown in Fig 1. The inset illustrates the device geometry. The spin-orbit interaction parameter of $1.71{\times}10^{11}$ eVm and effective mass of 0.98 $m^0$ are obtained at T=1.8 K, respectively. Fig. 2 shows the gate dependence of the spin-orbit interaction parameter and the hole concentration at 1.8 K, which indicates the spin-orbit interaction parameter increases with the carrier concentration in p-type channel. On the order hand, opposite gate dependence was found in n-type channel [1,2]. Therefore, the combined device of p- and n-type channel spin transistor would be a good candidate for the complimentary logic device.

  • PDF

The Effect of Circulat Hole Size and Distribution on Strength of Braided Composite (브레이드 복합재료의 원공의 크기와 분포가 재료강도에 미치는 영향)

  • Lee, Gyeong-U;Gang, Tae-Jin
    • Korean Journal of Materials Research
    • /
    • v.4 no.3
    • /
    • pp.253-258
    • /
    • 1994
  • The effect of hole size and hole-to-hole distance in the braided and laminated composite was studied in terms of tensile strength, pin bearing strength, and flexural strength of S2-glass fiber braided polyester. The tensile strength reduction with hole size was well fitted with he Whitney and Nuismer's prediction for the laminated composite. The characteristic distance was measured to be about 1.6mm for braided composite and 1.8mm for laminated one. The effect of distance between the centers of two circu lar holes on tensile strength was negligible when the distance between these two holes was larger than 4 times of the diameter of circular hole for both braided and laminated composite. The side effect was diminished when the center of hole was located 3 times farther than the diamet.er of the hole. The pin bearing strengths was decreased with the size of pin hole for both braided and laminated composite.

  • PDF

Application of the Flame Hole Dynamics to a Diffusion Flame in Channel Flow

  • Lee, Su-Ryong;Yang Na;Kim, Jong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1775-1783
    • /
    • 2003
  • The method of flame hole dynamics is demonstrated as a mean to simulate turbulent flame extinction. The core of the flame hole dynamics involves derivation of a random walk mapping for the flame holes, created by local quenching, between burning and quenched states provided that the dynamic characteristics of flame edges is known. Then, the random walk mapping is projected to a background turbulent field. The numerical simulations are carried out with further simplifications of flame string and unconditioned scalar dissipation rate. The simulation results show how the chance of partial quenching is influenced by the crossover scalar dissipation rate. Finally, a list of improvements, necessary to achieve more realistic turbulent flame quenching simulation, are discussed.

Numerical Study on the Air-Cushion Unit for Transportation of Large-Sized Glass Plate

  • Jun, Hyun-Joo;Kim, Kwang-Sun;Im, Ik-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.59-64
    • /
    • 2007
  • Non-contact transportation of a large-sized glass plate using air cushion for the vertical sputtering system of liquid crystal display (LCD) panel was considered. The objective of the study was to design an air pad unit which was composed of multiple injection and exhaust holes and mass flow supplying pipe. The gas was injected through multiple small holes to maintain the force for levitating glass plate. After hitting the plate, the air was vented through exhaust holes. Complex flow field and resulting pressure distribution on the glass surface were numerically studied to design the air injection pad. The exhaust hole size was varied to obtain evenly distributed pressure distribution at fixed diameter of the injection hole. Considering the force for levitating glass plate, the diameter of the exhaust hole of 30 to 40 times of the gas injection hole was recommended.

  • PDF

Development of Precision Drilling Machine for the Instrumentation of Nuclear Fuels (핵연료계장을 위한 정밀 드릴링장치 개발)

  • Hong, Jintae;Jeong, Hwang-Young;Ahn, Sung-Ho;Joung, Chang-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.223-230
    • /
    • 2013
  • When a new nuclear fuel is developed, an irradiation test needs to be carried out in the research reactor to analyze the performance of the new nuclear fuel. In order to check the performance of a nuclear fuel during the irradiation test in the test loop of a research reactor, sensors need to be attached in and out of the fuel rod and connect them with instrumentation cables to the measuring device located outside of the reactor pool. In particular, to check the temporary temperature change at the center of a nuclear fuel during the irradiation test, a thermocouple should be instrumented at the center of the fuel rod. Therefore, a hole needs to be made at the center of fuel pellet to put in the thermocouple. However, because the hardness and the density of a sintered $UO_2$ pellet are very high, it is difficult to make a small fine hole on a sintered $UO_2$ pellet using a simple drilling machine even though we use a diamond drill bit made by electro deposition. In this study, an automated drilling machine using a CVD diamond drill has been developed to make a fine hole in a fuel pellet without changing tools or breakage of workpiece. A sintered alumina ($Al_2O_3$) block which has a higher hardness than a sintered $UO_2$ pellet is used as a test specimen. Then, it is verified that a precise hole can be drilled off without breakage of the drill bit in a short time.

Analysis Study on Influence that the Center Hole Notch of CFRP with Laminated Structure Affects (적층구조를 가진 CFRP의 중앙 노치구멍이 미치는 영향에 관한 해석적 연구)

  • Park, Jae-Woong;Kim, Eundo;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.2
    • /
    • pp.177-182
    • /
    • 2018
  • In this paper, the fracture behaviour at CFRP laminated structure due to the vertical falling impact of the fight drone frame composed of CFRP was investigated through the analytical study. As CFRP consists of fiber differently from the existing plastic material, the fracture behaviour becoms complex. So, the preceding study is important through the analytical study before this experiment. By comparing with the existing study model at the same condition as the result of this study, the applied stress value is shown to decrease greatly at the analysis model with the center notch hole of the laminated CFRP drone frame. On the basis of this study result, the esthetic sense can be shown as the foundation data about the notch hole of drone frame are grafted onto the convergence technique.

Fluorescent white organic light-emitting diode structures with dye doped hole transporting layer

  • Galbadrakh, R.;Bang, H.S.;Baek, H.I.;Lee, C.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1407-1410
    • /
    • 2007
  • This work reports on three primary color fluorescent white organic light emitting diode (WOLED) with simple device structure where only a part of the hole transporting layer was doped with dye. The maximum luminance of the device reaches $35000\;cd/m^2$ at a drive voltage below 11V and external quantum efficiency of the device is above 1% in the wide range of luminance from 10 to $35000\;cd/m^2$ and reaches its highest 1.6% at $500\;cd/m^2$. The chromaticity coordinate shift of the device is negligible in this wide range of luminance. The blue shift of emission color with an increase of current density was attributed to the narrowing of recombination zone width with raise of current density.

  • PDF

Influence of green phosphorescent organic light-emitting devices of host by hole transport layer

  • Yoon, Do-Yeol;Lee, Chan-Jae;Moon, Dae-Gyu;Lee, Jeong-No
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.814-816
    • /
    • 2009
  • We have investigated the effect of host on the device charactistics of green phosphorescent organic light emitting devices consising of mCP, CBP and TPBi. Electrons were confined within the device by inserting hole transport layer between the electro transport and the emitting layer. When the appropriate interlayers were added, the device with TPBI host layer performances were found to be dramatically enhanced, with current efficiency and lifetime of 18cd/A and 18hour.

  • PDF